Advanced quantum information: entanglement and nonlocality

3. Homework sheet

Solutions to be submitted via email to t.kondra@cent.uw.edu.pl
Please submit a single pdf file using "Solutions Advanced Quantum Information" in the subject line. Latest date for submission: 19. April 2022

Problem 1 (Lecture notes Section 6)

The negativity of a quantum state $\rho^{A B}$ is defined as

$$
E_{n}\left(\rho^{A B}\right)=\frac{\left\|\rho^{T_{B}}\right\|_{1}-1}{2}
$$

where $\rho^{T_{B}}$ denotes partial transpose, and $\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}$ is the trace norm of the matrix M.
a) Prove that negativity fulfills

$$
E_{n}\left(\rho^{A B}\right) \geq 0
$$

with $E_{n}\left(\rho^{A B}\right)=0$ when $\rho^{A B}$ is separable.
b) Using the properties of trace norm prove that negativity is convex:

$$
E_{n}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{n}\left(\rho_{i}^{A B}\right) .
$$

Problem 2 (Lecture notes Section 6)

For a state of two qubits the concurrence C is given as

$$
C\left(\rho^{A B}\right)=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\}
$$

where λ_{i} are the square roots (in decreasing order) of the eigenvalues of the non-Hermitian matrix $\rho \tilde{\rho}$, with

$$
\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right),
$$

the Pauli matrix $\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and ρ^{*} denotes entry-wise complex conjugation. The entanglement of formation of the state can then be evaluated as

$$
E_{f}\left(\rho^{A B}\right)=h\left(\frac{1+\sqrt{1-C^{2}\left(\rho^{A B}\right)}}{2}\right)
$$

with the binary entropy $h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$.

Consider now a two-qubit state of the form

$$
\rho^{A B}=p_{1}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+p_{2}\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+p_{3}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+p_{4}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|
$$

with $p_{i} \geq 0$ and $\sum_{i} p_{i}=1$.
a) Evaluate the concurrence, entanglement of formation, and negativity of $\rho^{A B}$ as a function of the probabilities p_{i}.
b) Use the previous results to evaluate the concurrence, entanglement of formation, and negativity for the two-qubit Werner state

$$
\rho^{A B}=p\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-p) \frac{\mathbb{1}_{4}}{4}
$$

as a function of p. Plot the concurrence, entanglement of formation, and negativity for $0 \leq p \leq$ 1.

