Advanced quantum information: entanglement and nonlocality

1. Homework sheet

Solutions to be submitted via email to m.scalici@cent.uw.edu.pl
Please submit a single pdf file using "Solutions Advanced Quantum Information" in the subject line. Latest date for submission: 22. March 2022

Problem 1 (Lecture notes Section 1)

a) The density matrix ρ is positive semidefinite: $\langle\psi| \rho|\psi\rangle$ is a nonnegative real number

$$
\langle\psi| \rho|\psi\rangle \geq 0
$$

for any vector $|\psi\rangle$. Prove that any positive semidefinite matrix is Hermitian: $\rho=\rho^{\dagger}$.
b) A local quantum operation on Alice's side is defined as

$$
\Lambda^{A}\left(\rho^{A B}\right)=\sum_{i}\left(K_{i} \otimes \mathbb{1}\right) \rho^{A B}\left(K_{i} \otimes \mathbb{1}\right)^{\dagger}
$$

with local Kraus operators K_{i}. Prove that the state of Bob does not change upon local operations on Alice's side.
c) A pure state $|\psi\rangle^{A B}$ is a purification of a mixed state ρ^{A} if

$$
\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right] .\right.
$$

For $d_{A}=d_{B}$ prove that $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ are purifications of the same state if and only if

$$
|\psi\rangle^{A B}=(\mathbb{1} \otimes U)|\phi\rangle^{A B}
$$

for some local unitary U.
d) ${ }^{1}$ Prove that for every local measurement with Kraus operators $\left\{K_{i}^{A}\right\}_{i=1}^{n}$ there exist a unitary $U=U^{A B}$ and a complete set of projectors $\left\{\Pi_{i}\right\}_{i=1}^{n}$ acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that

$$
\operatorname{Tr}_{B}\left[\Pi_{i} U\left(\rho^{A} \otimes|0\rangle\left\langle\left. 0\right|^{B}\right) U^{\dagger} \Pi_{i}\right]=K_{i}^{A} \rho^{A}\left(K_{i}^{A}\right)^{\dagger}\right.
$$

for all $1 \leq i \leq n$ and every density matrix ρ^{A} acting on \mathcal{H}_{A}. Using this result, prove that for every local POVM $\left\{M_{i}^{A}\right\}_{i=1}^{n}$ there exists a complete set of projectors $\left\{\Pi_{i}\right\}_{i=1}^{n}$ acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that

$$
\operatorname{Tr}\left[M_{i}^{A} \rho^{A}\right]=\operatorname{Tr}\left[\Pi_{i} \rho^{A} \otimes|0\rangle\left\langle\left. 0\right|^{B}\right]\right.
$$

for all $1 \leq i \leq n$ and every density matrix ρ^{A} acting on \mathcal{H}_{A}.

[^0]
Problem 2 (Lecture notes Section 2)

a) Prove that a state $|\psi\rangle^{A B}$ is not entangled if and only if the reduced state ρ^{A} is pure.
b) Theorem 2.1. in the lecture notes states that a state $|\psi\rangle^{A B}$ can be converted into another state $|\phi\rangle^{A B}$ via LOCC if and only if $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$. Using this result, prove that the state

$$
\left|\Phi_{d}^{+}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}|i i\rangle
$$

can be converted into any other state $|\psi\rangle^{A B}$ for $d_{A}=d_{B}=d$. Can Alice and Bob use LOCC to convert $\left|\Phi_{d}^{+}\right\rangle$into a general mixed state?
c) For $d_{A}=d_{B}=4$, assume that Alice and Bob share the state

$$
|\psi\rangle^{A B}=\sqrt{0.4}|00\rangle+\sqrt{0.4}|11\rangle+\sqrt{0.1}|22\rangle+\sqrt{0.1}|33\rangle .
$$

As has been proven in the lecture, by using LOCC this state cannot be converted into the state

$$
|\phi\rangle^{A B}=\sqrt{0.5}|00\rangle+\sqrt{0.25}|11\rangle+\sqrt{0.25}|22\rangle
$$

Estimate the maximal probability to convert $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ via LOCC.
Assume now that Alice and Bob can use a catalyst, an additional two-qubit pair in the state

$$
|c\rangle^{A^{\prime} B^{\prime}}=\sqrt{0.6}|00\rangle+\sqrt{0.4}|11\rangle
$$

Prove that via LOCC Alice and Bob can convert $|\psi\rangle^{A B} \otimes|c\rangle^{A^{\prime} B^{\prime}}$ into $|\phi\rangle^{A B} \otimes|c\rangle^{A^{\prime} B^{\prime}}$.
d) Consider two states $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ with $d_{A}=d_{B}=2$. Prove that for any pair of states there exists either an LOCC conversion from $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ or from $|\phi\rangle^{A B}$ into $|\psi\rangle^{A B}$.

Problem 3 (Lecture notes Section 3)

a) For a bipartite state $\rho^{A B}$, the partial transpose with respect to Alice is denoted $\rho^{T_{A}}$, while $\rho^{T_{B}}$ denotes partial transpose with respect to Bob. Prove that $\rho^{T_{A}}$ and $\rho^{T_{B}}$ have the same eigenvalues.
b) Consider two matrices $M^{A B}$ and $N^{A B}$ acting on the composite Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B} . M^{T_{B}}$ denotes the partial transpose of $M^{A B}$, and $N^{T_{B}}$ denotes the partial transpose of $N^{A B}$. Prove that

$$
\operatorname{Tr}\left[M^{T_{B}} N\right]=\operatorname{Tr}\left[M N^{T_{B}}\right]
$$

Hint: note that any matrix $M^{A B}$ can be expanded as $M^{A B}=\sum_{i . j}|i\rangle\langle j| \otimes M_{i j}^{B}$ with some matrices $M_{i j}^{B}$ acting on \mathcal{H}_{B}.
c) For $d_{A}=d_{B}=2$ consider the state

$$
\begin{equation*}
\rho^{A B}=p\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-p) \frac{\mathbb{1}_{4}}{4}, \tag{1}
\end{equation*}
$$

where $\left|\Psi^{-}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2}$ is the singlet state and p is ranging between 0 and 1 . For which values of p is the state entangled? The state (1) is also called Werner state.
d) For a bipartite state $\rho^{A B}$ define

$$
\sigma^{A B}=(U \otimes V) \rho^{A B}(U \otimes V)^{\dagger}
$$

with local unitaries U and V. Prove that $\rho^{T_{A}}$ and $\sigma^{T_{A}}$ have the same eigenvalues.

[^0]: ${ }^{1}$ Problem 1d) is optional and does not contribute to the total number of points of the homework sheet.

