Advanced quantum information: entanglement and nonlocality

1. Homework sheet

Solutions to be submitted via email to m.scalici@cent.uw.edu.pl Please submit a single pdf file using "Solutions Advanced Quantum Information" in the subject line. Latest date for submission: 22. March 2022

Problem 1 (Lecture notes Section 1)

a) The density matrix ρ is positive semidefinite: $\langle \psi | \rho | \psi \rangle$ is a nonnegative real number

$$\langle \psi | \rho | \psi \rangle \ge 0$$

for any vector $|\psi\rangle$. Prove that any positive semidefinite matrix is Hermitian: $\rho = \rho^{\dagger}$.

b) A local quantum operation on Alice's side is defined as

$$\Lambda^{A}(\rho^{AB}) = \sum_{i} (K_{i} \otimes \mathbb{1}) \rho^{AB} (K_{i} \otimes \mathbb{1})^{\dagger}$$

with local Kraus operators K_i . Prove that the state of Bob does not change upon local operations on Alice's side.

c) A pure state $|\psi\rangle^{AB}$ is a purification of a mixed state ρ^A if

$$\rho^A = \mathrm{Tr}_B\left[|\psi\rangle\langle\psi|^{AB}\right].$$

For $d_A = d_B$ prove that $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$ are purifications of the same state if and only if

$$|\psi\rangle^{AB} = (\mathbb{1} \otimes U) |\phi\rangle^{AB}$$

for some local unitary U.

d)¹ Prove that for every local measurement with Kraus operators $\{K_i^A\}_{i=1}^n$ there exist a unitary $U = U^{AB}$ and a complete set of projectors $\{\Pi_i\}_{i=1}^n$ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ such that

$$\operatorname{Tr}_{B}\left[\Pi_{i}U\left(\rho^{A}\otimes|0\rangle\langle0|^{B}\right)U^{\dagger}\Pi_{i}\right]=K_{i}^{A}\rho^{A}\left(K_{i}^{A}\right)^{\dagger}$$

for all $1 \le i \le n$ and every density matrix ρ^A acting on \mathcal{H}_A . Using this result, prove that for every local POVM $\{M_i^A\}_{i=1}^n$ there exists a complete set of projectors $\{\Pi_i\}_{i=1}^n$ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ such that

$$\operatorname{Tr}\left[M_{i}^{A}\rho^{A}\right] = \operatorname{Tr}\left[\Pi_{i}\rho^{A}\otimes|0\rangle\langle0|^{B}\right]$$

for all $1 \le i \le n$ and every density matrix ρ^A acting on \mathcal{H}_A .

¹Problem 1d) is optional and does not contribute to the total number of points of the homework sheet.

Problem 2 (Lecture notes Section 2)

a) Prove that a state $|\psi\rangle^{AB}$ is not entangled if and only if the reduced state ρ^{A} is pure.

b) Theorem 2.1. in the lecture notes states that a state $|\psi\rangle^{AB}$ can be converted into another state $|\phi\rangle^{AB}$ via LOCC if and only if $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$. Using this result, prove that the state

$$|\Phi_d^+\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |ii\rangle$$

can be converted into any other state $|\psi\rangle^{AB}$ for $d_A = d_B = d$. Can Alice and Bob use LOCC to convert $|\Phi_d^+\rangle$ into a general mixed state?

c) For $d_A = d_B = 4$, assume that Alice and Bob share the state

$$|\psi\rangle^{AB} = \sqrt{0.4} |00\rangle + \sqrt{0.4} |11\rangle + \sqrt{0.1} |22\rangle + \sqrt{0.1} |33\rangle.$$

As has been proven in the lecture, by using LOCC this state cannot be converted into the state

 $|\phi\rangle^{AB} = \sqrt{0.5} |00\rangle + \sqrt{0.25} |11\rangle + \sqrt{0.25} |22\rangle.$

Estimate the maximal probability to convert $|\psi\rangle^{AB}$ into $|\phi\rangle^{AB}$ via LOCC.

Assume now that Alice and Bob can use a catalyst, an additional two-qubit pair in the state

$$|c\rangle^{A'B'} = \sqrt{0.6} |00\rangle + \sqrt{0.4} |11\rangle$$

Prove that via LOCC Alice and Bob can convert $|\psi\rangle^{AB} \otimes |c\rangle^{A'B'}$ into $|\phi\rangle^{AB} \otimes |c\rangle^{A'B'}$.

d) Consider two states $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$ with $d_A = d_B = 2$. Prove that for any pair of states there exists either an LOCC conversion from $|\psi\rangle^{AB}$ into $|\phi\rangle^{AB}$ or from $|\phi\rangle^{AB}$ into $|\psi\rangle^{AB}$.

Problem 3 (Lecture notes Section 3)

a) For a bipartite state ρ^{AB} , the partial transpose with respect to Alice is denoted ρ^{T_A} , while ρ^{T_B} denotes partial transpose with respect to Bob. Prove that ρ^{T_A} and ρ^{T_B} have the same eigenvalues.

b) Consider two matrices M^{AB} and N^{AB} acting on the composite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. M^{T_B} denotes the partial transpose of M^{AB} , and N^{T_B} denotes the partial transpose of N^{AB} . Prove that

$$\operatorname{Tr}\left[M^{T_B}N\right] = \operatorname{Tr}\left[MN^{T_B}\right].$$

Hint: note that any matrix M^{AB} can be expanded as $M^{AB} = \sum_{i,j} |i\rangle \langle j| \otimes M^B_{ij}$ with some matrices M^B_{ij} acting on \mathcal{H}_B .

c) For $d_A = d_B = 2$ consider the state

$$\rho^{AB} = p |\Psi^{-}\rangle \langle \Psi^{-}| + (1-p) \frac{\mathbb{I}_{4}}{4}, \tag{1}$$

where $|\Psi^-\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$ is the singlet state and *p* is ranging between 0 and 1. For which values of *p* is the state entangled? The state (1) is also called <u>Werner state</u>.

d) For a bipartite state ρ^{AB} define

$$\sigma^{AB} = (U \otimes V)\rho^{AB}(U \otimes V)^{\dagger}$$

with local unitaries U and V. Prove that ρ^{T_A} and σ^{T_A} have the same eigenvalues.