Advanced quantum information: entanglement and nonlocality

2. Homework sheet

Solutions to be submitted via email to m.scalici@cent.uw.edu.pl Please submit a single pdf file using "Solutions Advanced Quantum Information" in the subject line. Latest date for submission: 5. April 2022

Problem 1 (Lecture notes Section 4)

Assume that Alice and Bob share a Bell state

$$\left|\Phi^{+}\right\rangle^{AB} = \frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|11\right\rangle).$$

Additionally, Alice has two qubits C and D in a general state

$$\psi\rangle^{CD} = \sum_{i,j} c_{ij} |i\rangle^C \otimes |j\rangle^D, \qquad (1)$$

where c_{ij} are complex coefficients such that $\sum_{i,j} |c_{ij}|^2 = 1$. Convince yourself by explicit calculation that Alice can teleport the qubit *D* to Bob by using the following procedure:

- 1. Alice performs a measurement on her qubits *A* and *D* in the maximally entangled basis $\{|\Phi^+\rangle^{AD}, |\Phi^-\rangle^{AD}, |\Psi^+\rangle^{AD}, |\Psi^-\rangle^{AD}\}$. In her measurement, Alice obtains one of four possible outcomes, corresponding to one of the Bell states. Give an explicit formula for each of the post-measurement states $|\mu\rangle^{ABCD}$ of all the qubits.
- 2. Bob performs a conditional unitary on his qubit depending on Alice's measurement outcome, as given in the following table (σ_i are Pauli matrices):

Alice's outcome	$ \Phi^+\rangle$	$ \Phi^{-}\rangle$	$ \Psi^+ angle$	$ \Psi^{-}\rangle$
Bob's unitary	1	σ_z	σ_x	$-i\sigma_y$

Give an explicit expression for the final state $|v\rangle^{ABCD}$ of all the qubits for each case.

Problem 2 (Lecture notes Section 5)

a) Assume that Alice and Bob share a quantum state $|\psi\rangle^{AB}$ which has the Schmidt decomposition

$$|\psi\rangle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle,$$

where *s* is the number of non-zero Schmidt components, also called the <u>Schmidt number</u>. Let now Alice and Bob apply an LOCC protocol transforming $|\psi\rangle^{AB}$ into another pure state $|\phi\rangle^{AB}$. Prove that the Schmidt number cannot increase in this process.

b) Assume now that Alice and Bob share *m* copies of the Bell state $|\Phi^+\rangle$. Use the arguments from part a) to show that there is no LOCC protocol such that

$$\left|\Phi^{+}\right\rangle^{\otimes m} \rightarrow \left|\Phi^{+}\right\rangle^{\otimes n}$$

with n > m.

c) In Propositions 5.1 and 5.2 of the lecture notes we have proven that the entanglement cost of a state $|\psi\rangle$ is at most $S(\rho_{\psi})$ and that the distillable entanglement of $|\psi\rangle$ is at least $S(\rho_{\psi})$. We then used these results in Theorem 5.1 to prove that the distillable entanglement must be equal to $S(\rho_{\psi})$. Prove that the entanglement cost is equal to $S(\rho_{\psi})$.

Hint: the arguments are similar to the proof of Theorem 5.1.

d) Use the arguments from part c) to prove that the optimal rate for converting a state $|\psi\rangle$ into an entangled state $|\phi\rangle$ via LOCC is given by

$$r = \frac{S(\rho_{\psi})}{S(\rho_{\phi})},$$

i.e., for m and n large enough there exists an LOCC protocol such that

$$|\psi\rangle^{\otimes m} \to |\phi\rangle^{\otimes m}$$

and $n/m \approx r$.

Hint: consider first conversion $|\psi\rangle \rightarrow |\Phi^+\rangle$, and then the conversion $|\Phi^+\rangle \rightarrow |\phi\rangle$.

e) Assume that Alice and Bob share a state $|\psi\rangle^{AB}$. Show that whenever $|\psi\rangle^{AB}$ is entangled Alice and Bob can obtain a Bell state $|\Phi^+\rangle$ with nonzero probability by using LOCC. This proves that all pure entangled states are single-copy distillable.

f) For $d_A = d_B = 3$ consider the following state for $0 \le a \le 1$:

$$\rho_{a} = \frac{1}{8a+1} \begin{pmatrix} a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\ a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2} \end{pmatrix}$$

Prove that ρ_a has positive partial transpose for $0 \le a \le 1$. Show numerically that the realigned matrix $\tilde{\rho_a}$ fulfills $\|\tilde{\rho_a}\|_1 > 1$ for all 0 < a < 1. This proves that the state ρ_a is bound entangled in the range 0 < a < 1.