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Problem 1 (Lecture notes Section 4)

Assume that Alice and Bob share a Bell state

|Φ+〉
AB

=
1
√

2
(|00〉 + |11〉).

Additionally, Alice has two qubits C and D in a general state

|ψ〉CD =
∑
i, j

ci j |i〉C ⊗ | j〉D , (1)

where ci j are complex coefficients such that
∑

i, j |ci j|
2 = 1. Convince yourself by explicit calcu-

lation that Alice can teleport the qubit D to Bob by using the following procedure:

1. Alice performs a measurement on her qubits A and D in the maximally entangled basis
{|Φ+〉

AD , |Φ−〉AD , |Ψ+〉
AD , |Ψ−〉AD

}. In her measurement, Alice obtains one of four possi-
ble outcomes, corresponding to one of the Bell states. Give an explicit formula for each
of the post-measurement states |µ〉ABCD of all the qubits.

2. Bob performs a conditional unitary on his qubit depending on Alice’s measurement out-
come, as given in the following table (σi are Pauli matrices):

Alice’s outcome |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉

Bob’s unitary 1 σz σx −iσy

Give an explicit expression for the final state |ν〉ABCD of all the qubits for each case.

Problem 2 (Lecture notes Section 5)

a) Assume that Alice and Bob share a quantum state |ψ〉AB which has the Schmidt decomposition

|ψ〉AB =

s−1∑
i=0

√
λi |i〉 ⊗ |i〉 ,

where s is the number of non-zero Schmidt components, also called the Schmidt number. Let
now Alice and Bob apply an LOCC protocol transforming |ψ〉AB into another pure state |φ〉AB.
Prove that the Schmidt number cannot increase in this process.
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b) Assume now that Alice and Bob share m copies of the Bell state |Φ+〉. Use the arguments
from part a) to show that there is no LOCC protocol such that

|Φ+〉
⊗m
→ |Φ+〉

⊗n

with n > m.

c) In Propositions 5.1 and 5.2 of the lecture notes we have proven that the entanglement cost
of a state |ψ〉 is at most S (ρψ) and that the distillable entanglement of |ψ〉 is at least S (ρψ). We
then used these results in Theorem 5.1 to prove that the distillable entanglement must be equal
to S (ρψ). Prove that the entanglement cost is equal to S (ρψ).

Hint: the arguments are similar to the proof of Theorem 5.1.

d) Use the arguments from part c) to prove that the optimal rate for converting a state |ψ〉 into an
entangled state |φ〉 via LOCC is given by

r =
S (ρψ)
S (ρφ)

,

i.e., for m and n large enough there exists an LOCC protocol such that

|ψ〉⊗m → |φ〉⊗n

and n/m ≈ r.

Hint: consider first conversion |ψ〉 → |Φ+〉, and then the conversion |Φ+〉 → |φ〉.

e) Assume that Alice and Bob share a state |ψ〉AB. Show that whenever |ψ〉AB is entangled Alice
and Bob can obtain a Bell state |Φ+〉 with nonzero probability by using LOCC. This proves that
all pure entangled states are single-copy distillable.

f) For dA = dB = 3 consider the following state for 0 ≤ a ≤ 1:

ρa =
1

8a + 1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 1+a

2 0
√

1−a2

2
0 0 0 0 0 0 0 a 0
a 0 0 0 a 0

√
1−a2

2 0 1+a
2


.

Prove that ρa has positive partial transpose for 0 ≤ a ≤ 1. Show numerically that the realigned
matrix ρ̃a fulfills ||ρ̃a||1 > 1 for all 0 < a < 1. This proves that the state ρa is bound entangled in
the range 0 < a < 1.
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