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April 20, 2022



Contents

1 Short review of quantum theory 5
1.1 Quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Quantum measurements and operations . . . . . . . . . . . . . . . . . . . 6
1.3 Composite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory of quantum entanglement 10
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Local operations and classical communication (LOCC) . . . . . . . . . . 10
2.3 Pure state conversion via LOCC . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Probabilistic conversion and catalysis . . . . . . . . . . . . . . . . . . . . 14
2.5 Bell states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Entanglement for mixed states . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Entanglement detection 17
3.1 Entanglement witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Partial transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Applications of entanglement 21
4.1 Quantum teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Superdense coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Entanglement distillation and dilution 26
5.1 Shannon and von Neumann entropy . . . . . . . . . . . . . . . . . . . . . 26
5.2 Typical sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Entanglement dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Entanglement distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 LOCC and separable operations . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Entanglement distillation for mixed states . . . . . . . . . . . . . . . . . . 33
5.7 Matrix realignment criterion and bound entanglement . . . . . . . . . . 35

6 Quantification of entanglement 38
6.1 Entanglement of formation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Monotonicity under LOCC . . . . . . . . . . . . . . . . . . . . . . 40
6.1.2 Evaluating entanglement of formation for two qubits . . . . . . . 43

6.2 Trace distance and fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Distance-based entanglement measures . . . . . . . . . . . . . . . . . . . 46

2



Contents

6.4 Negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5 Distillable entanglement and entanglement cost . . . . . . . . . . . . . . 49

7 Monogamy of entanglement 51

3



Index

Bell states, 15
Bound entanglement, 37

Catalytic conversion, 14
Choi matrix, 19
Choi-Jamiołkowski isomorphism, 19
Completely positive map, 19
Concurrence, 43

Data-processing inequality, 43, 46
Density matrix, 5
Distillable entanglement, 30

Entanglement, 10
cost, 28
dilution, 28
distillation, 30
measure, 38
monogamy, 51
of formation, 39

Fidelity, 44

Kraus operator, 6

LOCC, 11

Matrix functions, 9
Matrix realignment criterion, 36
Maximally correlated states, 50
Maximally entangled states, 15
Mixed state, 5

Nielsen’s theorem, 13

Partial trace, 8
Polar decomposition, 9

Positive map, 19
POVM, 7
PPT criterion, 20
Probabilistic conversion, 14
Pure state, 5
Purification, 9

Quantum
measurement, 6
operation, 7
relative entropy, 47

Qubit, 5

Reduced density matrix, 8
Relative entropy of entanglement, 47

Schmidt coefficients, 8
Schmidt decomposition, 8
Separable operation, 32
Separable state, 10, 15
Shannon entropy, 26
Singlet state, 15
Superdense coding, 24

Teleportation, quantum, 21
Trace distance, 43
Trace norm, 36
Typical sequences, 26

Von Neumann
entropy, 26
measurement, 7

4



1 Short review of quantum theory

1.1 Quantum states

Any physical system is completely described by a state vector |ψ⟩ in a Hilbert space
H . A system with a two-dimensional Hilbert space is called a qubit (quantum bit). In
general, we consider a Hilbert space with an arbitrary but finite dimension.

Any system which is described by a single state vector is said to be in a pure state. If
the system is in the pure state |ψi⟩with probability pi, the physical state of the system is
described by the density matrix

ρ =
∑

i

pi |ψi⟩⟨ψi| ,

where |ψi⟩⟨ψi| denotes projector onto the vector |ψi⟩. If pmax < 1, the system is in a mixed
state.

Example. For p0 = p1 = 1/2 and

|ψ0⟩ = |0⟩ =
(

1
0

)
, |ψ1⟩ = cosα |0⟩ + sinα |1⟩ =

(
cosα
sinα

)
we have the density matrix

ρ =
1
2
|0⟩⟨0| +

1
2
|ψ1⟩⟨ψ1| =

1
2

(
1
0

) (
1 0

)
+

1
2

(
cosα
sinα

) (
cosα sinα

)
=

1
2

(
1 0
0 0

)
+

1
2

(
cos2 α cosα sinα

cosα sinα sin2 α

)
=

1
2

(
1 + cos2 α cosα sinα
cosα sinα sin2 α

)
.

Properties of density matrices:

• ρ has trace equal to one:
Tr[ρ] = 1,

• ρ is positive semidefinite:
⟨ψ|ρ|ψ⟩ ≥ 0

for any vector |ψ⟩.
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1 Short review of quantum theory

Note that the second property also implies that ρ is Hermitian: ρ† = ρ.

1.2 Quantum measurements and operations

According to the measurement postulate of quantum mechanics, for a spin- 1
2 particle

in the state

|ψ⟩ = a |↑⟩ + b |↓⟩ =
(

a
b

)
the probability to measure “spin up” or “spin down” is given by

p(↑) = |a|2 ,

p(↓) = |b|2 = 1 − p(↑).

The post-measurement state of the particle is either |↑⟩ or |↓⟩.

Here, we consider a more general definition. A general quantum measurement is
described by a collection {Ki} of Kraus operators that fulfill the completeness equation:

∑
i

K†i Ki = 1d =


1 0 0 0
0 1 0 0

. . .
0 0 1 0
0 0 0 1


. (1.1)

Given a density matrix ρ and the set of Kraus operators {Ki}, the probability that the
measurement outcome i occurs is given by

pi = Tr[KiρK†i ].

For pi , 0 the post-measurement state of the system is described by the density matrix

ρi =
KiρK†i

pi
.

Any set of Kraus operators corresponds to a measurement, in principle realizable in
laboratory. Vice versa, for any physically realizable measurement there exists a valid
set of Kraus operators.

Figure 1.1: General quantum measurement
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1 Short review of quantum theory

The set of operators
Mi = K†i Ki

is called positive operator-valued measure (POVM). The completeness condition (1.1)
implies

∑
i Mi = 1d, and the probabilities of the outcome i is pi = Tr[Miρ]. For a

projective measurement, the operators Ki are orthogonal projectors: KiK j = δi jKi. If Ki
are orthogonal projectors with rank one, we have a von Neumann measurement.

Any set of Kraus operators {Ki} also defines a quantum operation:

Λ(ρ) =
∑

i

KiρK†i .

Quantum operations describe the most general change of a quantum state in a physical
process. They correspond to a special class of linear maps, which are completely positive
and trace preserving (CPTP).

1.3 Composite systems

For two parties, Alice (A) and Bob (B), with Hilbert spacesHA andHB the total Hilbert
space is a tensor product of the subsystem spaces: HAB = HA ⊗HB.

Example. Consider the states

|ψ⟩A = cosα |0⟩ + sinα |1⟩ =
(

cosα
sinα

)
, |ψ⟩B = cos β |0⟩ + sin β |1⟩ =

(
cos β
sin β

)
.

The state of the total system is

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B =

(
cosα
sinα

)
⊗

(
cos β
sin β

)
=


cosα cos β
cosα sin β
sinα cos β
sinα sin β

 .

If {|i⟩} and {|k⟩} are orthonormal bases of HA and HB, then {|i⟩ ⊗ |k⟩} is an orthonormal
basis ofHAB. We can expand any pure state as

|ψ⟩AB =
∑
i,k

cik |i⟩ ⊗ |k⟩ .

with cik ∈ C. Any density matrix can be expanded as

ρAB =
∑
i, j,k,l

ci jkl |i⟩⟨ j| ⊗ |k⟩⟨l|

7



1 Short review of quantum theory

with ci jkl ∈ C. The subsystem A is described by the reduced density matrix

ρA = TrB[ρAB] =
∑
i, j,k,l

ci jkl |i⟩⟨ j|Tr [|k⟩⟨l|] =
∑
i, j,k,l

ci jkl |i⟩⟨ j| δkl =
∑
i, j,k

ci jkk |i⟩⟨ j| , (1.2)

where TrB is the partial trace over the subsystem B.

Example. Consider the density matrix

ρAB =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
(

X Y
Y† Z

)

with matrices X =
(

1
2 0
0 0

)
, Y =

(
0 1

2
0 0

)
and Z =

(
0 0
0 1

2

)
.

The reduced density matrices are

ρA =

(
Tr [X] Tr [Y]
Tr

[
Y†

]
Tr [Z]

)
=

1
2

(
1 0
0 1

)
,

ρB = X + Z =
1
2

(
1 0
0 1

)
.

For any pure state |ψ⟩AB there exists a product basis {|i⟩ ⊗ | j⟩} such that

|ψ⟩AB =
∑

i

√
λi |i⟩ ⊗ |i⟩ (1.3)

with λi ≥ 0. This is called Schmidt decomposition of |ψ⟩AB. The numbers λi are called
Schmidt coefficients of |ψ⟩AB. The Schmidt coefficients are equal to the eigenvalues of
the reduced states TrA[|ψ⟩⟨ψ|AB] and TrB[|ψ⟩⟨ψ|AB].

For composite systems it is possible to perform local measurements on one of the
subsystems. Kraus operators of local measurements on Alice’s side have the form
KAB

i = Ki ⊗ 1 with the completeness condition∑
i

(
KAB

i

)†
KAB

i =
∑

i

K†i Ki ⊗ 1 = 1AB.

Local quantum operations on Alice’s side are defined as

ΛA(ρAB) =
∑

i

(Ki ⊗ 1)ρAB (Ki ⊗ 1)† .
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1 Short review of quantum theory

The state of Bob does not change upon local operations of Alice:

ρB = TrA

[
ρAB

]
= TrA

[
ΛA(ρAB)

]
.

Purification: A pure state |ψ⟩AB is called a purification of a mixed state ρA if

ρA = TrB[|ψ⟩⟨ψ|AB].

Two states |ψ⟩AB and |ϕ⟩AB are purifications of the same state ρA if and only if

|ψ⟩AB = (1 ⊗U) |ϕ⟩AB

for some local unitary U.

Useful properties of square matrices

Functions of matrices: Let f be a function from C to C. For a normal (diogonalizable)
matrix A =

∑
i ai |ψi⟩⟨ψi|with eigenvalues ai ∈ C and eigenstates |ψi⟩we define

f (A) :=
∑

i

f (ai) |ψi⟩⟨ψi| .

Polar decomposition: For any square matrix A there exist unitary matrices U and V
such that

A = U
√

A†A =
√

AA†V.

Every Hermitian matrix H can be decomposed into a positive and negative part H =
P+ − P− with positive matrices P±. Moreover, P+ and P− are supported on orthogonal
subspaces, such that Tr [P+P−] = 0.
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2 Theory of quantum entanglement

2.1 Definition

If there are states |a⟩ ∈ HA and |b⟩ ∈ HB such that

|ψ⟩AB = |a⟩ ⊗ |b⟩ ,

then |ψ⟩AB is called separable (or product state). Otherwise the state is called entangled.
|ψ⟩AB is product if and only if ρA is pure.

Notation: For product states |i⟩ ⊗ | j⟩we sometimes write |i⟩ | j⟩ or |i j⟩.

Example. |Φ+⟩ = 1
√

2
(|00⟩ + |11⟩) is entangled since ρA = 1

212.

2.2 Local operations and classical communication (LOCC)

Figure 2.1: Local operations and classical communication
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2 Theory of quantum entanglement

LOCC describes the most general procedure Alice and Bob can apply, if they can perform
arbitrary quantum measurements/operations locally, and exchange classical informa-
tion. Any LOCC protocol can be decomposed into the following steps:

1. Alice performs a local measurement {Ki} on her subsystem.

2. The outcome i of Alice’s measurement is communicated to Bob via a classical
channel.

3. Bob performs a local measurement {L j(i)} on his subsystem, which depends on
Alice’s outcome i.

4. The outcome j of Bob’s measurement is communicated classically to Alice.

5. Alice performs a local measurement on her subsystem which can depend on all
outcomes of all previous measurements, and the process starts over at step 2.

2.3 Pure state conversion via LOCC

Assume that Alice and Bob share the state |ψ⟩AB. Which other states |ϕ⟩AB can be
obtained via LOCC?

Proposition 2.1. Suppose |ψ⟩AB can be transformed into |ϕ⟩AB via LOCC. Then this trans-
formation can be achieved by a protocol involving just the following steps: Alice performs a
measurement with Kraus operators {K j}, sends the result j to Bob, who applies a conditional
unitary U j on his system.

Proof. Let K j =
∑

k,l K j,kl |k⟩⟨l| be a Kraus operator of Bob expanded in the Schmidt basis
of |ψ⟩ =

∑
i
√
λi |i⟩ ⊗ |i⟩. The post-measurement state |µ j⟩ is given as

|µ j⟩ =
1 ⊗ K j |ψ⟩
√p j

=

∑
k,l K j,kl

√
λl |l⟩ ⊗ |k⟩
√p j

with probability
p j = ⟨ψ|1 ⊗ K†j K j|ψ⟩ =

∑
k,l

λl|K j,kl|
2.

Assume now that instead Alice performs a measurement with Kraus operator L j =∑
k,l K j,kl |k⟩⟨l|, leading to the state

|ν j⟩ =
L j ⊗ 1 |ψ⟩
√p j

=

∑
k,l K j,kl

√
λl |k⟩ ⊗ |l⟩
√p j

11



2 Theory of quantum entanglement

with the same probability p j. Note that |µ j⟩ and |ν j⟩ are the same up to interchanging A
and B, which by Schmidt decomposition implies that

|µ j⟩ =
∑

i

√
αi j

(
U j |i⟩

)
⊗

(
V j |i⟩

)
,

|ν j⟩ =
∑

i

√
αi j

(
V j |i⟩

)
⊗

(
U j |i⟩

)
for some αi j ≥ 0 and local unitaries U j and V j, and thus

|µ j⟩ = (U jV†j ⊗ V jU†j ) |ν j⟩ .

Thus, Bob performing a measurement {K j} on |ψ⟩ is equivalent to Alice performing a
measurement {U jV†j L j}, followed by Bob performing the unitary V jU†j .

A measurement by Bob on a pure state can be simulated by a measurement by Alice, and
a conditional unitary by Bob. If Alice and Bob perform an LOCC protocol consisting
of many rounds of measurements and classical communication, we replace each round
involving Bob’s measurement by a corresponding measurement on Alice’s side. In this
way, any LOCC protocol transforming |ψ⟩AB into |ϕ⟩AB can be simulated by a single
measurement of Alice, followed by conditional unitary on Bob’s side. □

Majorization: Consider two real d-dimensional vectors x⃗ and y⃗ with elements in de-
creasing order. Then x⃗ ≺ y⃗ if

k∑
i=1

xi ≤

k∑
i=1

yi

for all k ∈ [1, d − 1], and
∑d

i=1 xi =
∑d

i=1 yi. For a Hermitian matrix H let λ⃗H be the vector
of eigenvalues of H in decreasing order. For two Hermitian matrices H and K we write
H ≺ K if λ⃗H ≺ λ⃗K.

Proposition 2.2. Let H and K be Hermitian matrices. Then H ≺ K if and only if there is a
probability distribution p j and unitary matrices U j such that

H =
∑

j

p jU jKU†j .

For a given state |ψ⟩AB, let λ⃗ψ denote the vector with eigenvalues of the reduced state
TrB[|ψ⟩⟨ψ|AB] in decreasing order. Equipped with these tools, we can provide a complete
characterization of LOCC transformations between bipartite pure states in the following
theorem, which is also called Nielsen’s theorem.
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2 Theory of quantum entanglement

Theorem 2.1. There exists an LOCC protocol transforming |ψ⟩AB into |ϕ⟩AB if and only if
λ⃗ψ ≺ λ⃗ϕ.

Proof. Suppose |ψ⟩AB can be transformed into |ϕ⟩AB via LOCC. By proposition 2.1, the
transformation is achieved if Alice applies a measurement with local Kraus operators
{K j} and Bob applies local unitaries {U j}. After Alice’s measurement, the total post-
measurement state is equal to |ϕ⟩AB up to local unitaries on Bob’s side:

K j ⊗ 1 |ψ⟩
AB =

√
p j1 ⊗U†j |ϕ⟩

AB .

Defining ρψ = TrB[|ψ⟩⟨ψ|AB] and ρϕ = TrB[|ϕ⟩⟨ϕ|AB], we get

K jρψK†j = p jρϕ

with p j = Tr[K jρψK†j ]. By polar decomposition there exists a unitary V j such that

K j
√
ρψ =

√
K jρψK†j V j =

√
p jρϕV j.

Multiplying this equation with its adjoint from the left, we get√
ρψK†j K j

√
ρψ = p jV†jρϕV j.

Taking sum over j and using
∑

j K†j K j = 1 we obtain

ρψ =
∑

j

p jV†jρϕV j,

and by proposition 2.2 we have λ⃗ψ ≺ λ⃗ϕ.

Suppose that λ⃗ψ ≺ λ⃗ϕ, and thus ρψ ≺ ρϕ. By proposition 2.2

ρψ =
∑

j

p jU jρϕU†j

for some probabilities p j and unitaries U j. If ρψ is invertible, we define

K j :=
√

p jρϕU†jρ
−1/2
ψ .

It holds that

∑
j

K†j K j = ρ
−1/2
ψ

∑
j

p jU jρϕU†j

ρ−1/2
ψ = ρ−1/2

ψ ρψρ
−1/2
ψ = 1,
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2 Theory of quantum entanglement

thus K j are valid Kraus operators. Suppose Alice performs the measurement {K j}, it
follows

K jρψK†j = p jρϕ.

When Alice applies the measurement {K j} to the total state |ψ⟩AB, she obtains the reduced
state ρϕ with probability p j. Since all purifications of ρϕ are equivalent up to unitary
on Bob’s side (see Section 1.3), it follows that there exist unitaries U j on Bob’s side such
that

K j ⊗ 1 |ψ⟩
AB =

√
p j1 ⊗U j |ϕ⟩

AB .

Thus, if Alice applies measurement {K j} to the state |ψ⟩AB, communicates the measure-
ment outcome j to Bob, and he performs U†j , they achieve the conversion |ψ⟩AB

→

|ϕ⟩AB. □

2.4 Probabilistic conversion and catalysis

If there is no LOCC protocol converting |ψ⟩AB into |ϕ⟩AB, there might still be a chance
to perform probabilistic conversion. Here, Alice and Bob are allowed to post-select
the outcomes of their local measurements, leading to a conversion |ψ⟩AB

→ |ϕ⟩AB with
probability p. For general density matrices ρAB and σAB the optimal probability can be
defined as

P
(
ρAB
→ σAB

)
= max
{Ki}

Tr

∑
i

Kiρ
ABK†i

 : σAB =

∑
i KiρABK†i

Tr
[∑

i KiρABK†i
] ,

and the maximum is taken over all (incomplete) sets of Kraus operators {Ki} which
are implementable via LOCC. For bipartite pure states |ψ⟩AB and |ϕ⟩AB the maximal
conversion probability can be evaluated as

P
(
|ψ⟩AB

→ |ϕ⟩AB
)
= min

l∈[1,n]

∑n
i=l αi∑n
j=l β j

,

where αi and β j are the Schmidt coefficients of |ψ⟩AB and |ϕ⟩AB, respectively, sorted in
decreasing order.

A catalytic conversion between the states |ψ⟩AB and |ϕ⟩AB is possible if there exists an
additional state |c⟩A

′B′ and an LOCC protocol converting |ψ⟩AB
⊗|c⟩A

′B′ into |ϕ⟩AB
⊗|c⟩A

′B′ .
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2 Theory of quantum entanglement

2.5 Bell states

In the Hilbert space of two qubits the following four states form an orthonormal basis:

|Φ+⟩ =
1
√

2
(|00⟩ + |11⟩),

|Φ−⟩ =
1
√

2
(|00⟩ − |11⟩),

|Ψ+⟩ =
1
√

2
(|01⟩ + |10⟩),

|Ψ−⟩ =
1
√

2
(|01⟩ − |10⟩).

These states are called Bell states (or EPR states). The state |Ψ−⟩ is also called singlet
state. The reduced state of any Bell state is 1

212, and for any single-qubit state ρ it holds
1
212 ≺ ρ. With Theorem 2.1 it follows that any Bell state can be converted into any
two-qubit pure state via LOCC. Bell states are also called maximally entangled states
(of two qubits).

For dA = dB = d, a quantum state |Ψd⟩ is maximally entangled if and only if

TrA [|Ψd⟩⟨Ψd|] =
1
d
1d.

All maximally entangled states are equivalent to

|Φ+d ⟩ =
1
√

d

d−1∑
i=0

|ii⟩

up to local unitary on one side: there exist unitaries U and V such that

|Ψd⟩ = (U ⊗ 1) |Φ+d ⟩ = (1 ⊗ V) |Φ+d ⟩

for any maximally entangled state |Ψd⟩.

2.6 Entanglement for mixed states

A bipartite mixed state is separable if it can be written as:

ρAB
sep =

∑
i

pi |ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi|

15



2 Theory of quantum entanglement

with pi ≥ 0,
∑

i pi = 1, |ψi⟩ ∈ HA and |ϕi⟩ ∈ HB. If the state cannot be written in this form,
it is called entangled. Separable states form a convex subset in the set of all quantum
states.

Any separable state can be produced by LOCC from an initial product state |00⟩. No
entangled state can be produced by LOCC.

Figure 2.2: Separable states are a convex subset in the set of all states.
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3 Entanglement detection

Literature: Horodecki et al., Rev. Mod. Phys. 81, 865 (2009)

3.1 Entanglement witnesses

Let WAB be a Hermitian matrix such that

Tr
[
WAB

(
|ψ⟩⟨ψ| ⊗ |ϕ⟩⟨ϕ|

)]
=

(
⟨ψ| ⊗ ⟨ϕ|

)
WAB

(
|ψ⟩ ⊗ |ϕ⟩

)
≥ 0

for any |ψ⟩ ∈ HA and |ϕ⟩ ∈ HB. Then, for any separable state ρAB
sep we have

Tr
[
WABρAB

sep

]
=

∑
i

pi Tr
[
WAB

(
|ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi|

)]
≥ 0.

Thus, if
Tr

[
WABρAB

]
< 0,

the state ρAB must be entangled. The matrix WAB is called entanglement witness. From
the Hahn-Banach theorem follows

Theorem 3.1. For any entangled state ρAB there exists an entanglement witness such that
Tr

[
WABρAB

]
< 0.

Figure 3.1: Entanglement witness.
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3 Entanglement detection

An entanglement witness can be interpreted as an observable with expectation value
Tr

[
WABρAB

]
.

Example. For dA = dB the swap operation is an entanglement witness:

WAB =

d−1∑
i, j=0

|i⟩⟨ j| ⊗ | j⟩⟨i| .

For any product state |ψ⟩ ⊗ |ϕ⟩we find that WAB
|ψ⟩ ⊗ |ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩, and thus(

⟨ψ| ⊗ ⟨ϕ|
)

WAB
(
|ψ⟩ ⊗ |ϕ⟩

)
=

(
⟨ψ| ⊗ ⟨ϕ|

) (
|ϕ⟩ ⊗ |ψ⟩

)
= |⟨ψ|ϕ⟩|2 ≥ 0.

WAB has negative eigenvalues:

WAB
|Ψ−⟩ =

1
√

2

(
WAB

|01⟩ −WAB
|10⟩

)
= − |Ψ−⟩ ,

thus WAB detects entanglement in the state |Ψ−⟩.

3.2 Partial transposition

For a bipartite stateρ =
∑

i, j,k,l ci jkl |i⟩⟨ j|⊗|k⟩⟨l| the partial transposition on Bob’s subsystem
is defined as

ρTB =
∑
i, j,k,l

ci jkl |i⟩⟨ j| ⊗ (|k⟩⟨l|)T =
∑
i, j,k,l

ci jkl |i⟩⟨ j| ⊗ |l⟩⟨k| .

Note that ρTA and ρTB have the same eigenvalues.

Applying partial transposition to a separable state leads to another quantum state:

ρTB
sep =

∑
i

pi |ψi⟩⟨ψi| ⊗ (|ϕi⟩⟨ϕi|)T =
∑

i

pi |ψi⟩⟨ψi| ⊗ |ϕ
∗

i ⟩⟨ϕ
∗

i | .

Thus, if ρTB is not positive, ρ must be an entangled state.
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3 Entanglement detection

Example. For the state |ψ⟩ = cosα |00⟩ + sinα |11⟩we have

ρ = |ψ⟩⟨ψ| =


cos2 α 0 0 cosα sinα

0 0 0 0
0 0 0 0

cosα sinα 0 0 sin2 α

 =
(

X Y
Y† Z

)

with X =
(

cos2 α 0
0 0

)
, Y =

(
0 cosα sinα
0 0

)
and Z =

(
0 0
0 sin2 α

)
.

We obtain

ρTA =

 XT YT(
Y†

)T
ZT

 =


cos2 α 0 0 0
0 0 cosα sinα 0
0 cosα sinα 0 0
0 0 0 sin2 α

 ,
ρTB =

(
X Y†

Y Z

)
= ρTA .

The eigenvalues of ρTA are cos2 α, sin2 α, ±| cosα sinα|, thus |ψ⟩ is entangled for all
α , nπ2 . In general ρTA , ρTB .

Choi–Jamiołkowski isomorphism, positive, and completely positive maps. A
positive map is a linear map Λ acting on matrices such that Λ(ρ) is positive
semidefinite for any positive semidefinite matrix ρ. For a bipartite density matrix
ρAB =

∑
i, j,k,l ci jkl |i⟩⟨ j| ⊗ |k⟩⟨l|we define 1 ⊗Λ(ρAB) as

1 ⊗Λ(ρAB) =
∑
i, j,k,l

ci jkl |i⟩⟨ j| ⊗Λ(|k⟩⟨l|).

The map Λ is completely positive (CP) if 1 ⊗ Λ(ρAB) is positive semidefinite for any
positive semidefinite matrix ρAB in the extended Hilbert space of any dimension.
Every quantum operation is CP (see section 1.2). Every CP map is positive, but there
are positive maps which are not CP (e.g. transpose).

For a linear map Λ acting on Hilbert space of dimension d, the Choi matrix is defined
as

MΛ = (1 ⊗Λ) |Φ+d ⟩⟨Φ
+
d | .

A linear map Λ is positive if and only if MΛ is an entanglement witness. Moreover,
for any entanglement witness WAB with dA = dB there exists a positive map Λ such
that WAB =MΛ. The map Λ is CP if and only if MΛ is positive semidefinite.
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3 Entanglement detection

Proposition 3.1. For dA = dB = 2 a state ρAB is separable if and only if ρTB is positive
semidefinite.

Proof. For any entangled state ρAB there exists an entanglement witness WAB such that
(see Section 3.1)

Tr
[
WABρAB

]
< 0.

With the Choi-Jamiołkowski isomorphism, there also exists a positive map Λ such that

Tr
[(
1 ⊗Λ |Φ+⟩⟨Φ+|

)
ρAB

]
< 0.

Every positive qubit map can be decomposed as

Λ(ρ) = ΛCP
1 (ρ) +

[
ΛCP

2 (ρ)
]T
,

with CP maps ΛCP
i , and thus

0 > Tr
[(
1 ⊗Λ |Φ+⟩⟨Φ+|

)
ρAB

]
= Tr

[(
1 ⊗ΛCP

1 |Φ
+
⟩⟨Φ+|

)
ρAB

]
+ Tr

[(
1 ⊗ΛCP

2 |Φ
+
⟩⟨Φ+|

)TB
ρAB

]
= Tr

[
X1ρ

AB
]
+ Tr

[
XTB

2 ρ
AB

]
with positive matrices Xi = 1 ⊗Λ

CP
i |Φ

+
⟩⟨Φ+|. Using

Tr
[
XTB

2 ρ
AB

]
= Tr

[
X2ρ

TB
]
,

we obtain
0 > Tr

[
X1ρ

AB
]
+ Tr

[
X2ρ

TB
]
≥ Tr

[
X2ρ

TB
]
.

Since X2 is positive, ρTB must have negative eigenvalues. □

This result is called positive partial transpose (PPT) criterion, which extends to larger
dimensions as follows.

Theorem 3.2. For dAdB ≤ 6 a state ρAB is separable if and only if ρTB is positive. For all
dAdB > 6 there exist entangled states which have positive partial transpose.
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4 Applications of entanglement

4.1 Quantum teleportation

Suppose Alice and Bob share a Bell state |Φ+⟩AB. Additionally, Alice has a qubit A′ in
the state |ψ⟩A

′

= c0 |0⟩ + c1 |1⟩. Alice can send the qubit A′ to Bob by using quantum
teleportation, see also Fig. 4.1.

Figure 4.1: Quantum teleportation.

The total initial state of Alice and Bob has the form

|Φ⟩A
′AB =

(
c0 |0⟩A

′

+ c1 |1⟩A
′
)
⊗

1
√

2

(
|00⟩AB + |11⟩AB

)
=

1
√

2
[c0 |0⟩ (|00⟩ + |11⟩) + c1 |1⟩ (|00⟩ + |11⟩)] .

21



4 Applications of entanglement

Controlled NOT gate (CNOT): A unitary transformation acting on two qubits (control
and target) as follows

Before After
Control Target Control Target
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

Hadamard gate: A unitary transformation on one qubit acting as follows

|0⟩ →
1
√

2
(|0⟩ + |1⟩),

|1⟩ →
1
√

2
(|0⟩ − |1⟩).

In the next step, Alice performs a CNOT gate on her qubits A′A, where A′ is the control
qubit and A is the target. This leads to

|Φ′⟩ =
1
√

2
[c0 |0⟩ (|00⟩ + |11⟩) + c1 |1⟩ (|10⟩ + |01⟩)] .

Finally, Alice applies a Hadamard gate to A′:

|Φ′′⟩ =
1
2

[c0 (|0⟩ + |1⟩) (|00⟩ + |11⟩) + c1 (|0⟩ − |1⟩) (|10⟩ + |01⟩)]

=
1
2

[|00⟩ (c0 |0⟩ + c1 |1⟩) + |01⟩ (c0 |1⟩ + c1 |0⟩) + |10⟩ (c0 |0⟩ − c1 |1⟩) + |11⟩ (c0 |1⟩ − c1 |0⟩)] .

Alice measures her qubits A′ and A in the computational basis {|0⟩ , |1⟩}. Depending
on the outcome of her measurement, the state of Bob’s qubit B collapses to one of the
following states:

Alice’s outcome State of B
00 c0 |0⟩ + c1 |1⟩
01 c0 |1⟩ + c1 |0⟩
10 c0 |0⟩ − c1 |1⟩
11 c0 |1⟩ − c1 |0⟩

Bob performs a correction on his qubit depending on Alice’s measurement according
to the following table (σi are Pauli matrices) outcome:
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4 Applications of entanglement

Alice’s outcome State of B Correction State of B after correction
00 c0 |0⟩ + c1 |1⟩ 1 c0 |0⟩ + c1 |1⟩
01 c0 |1⟩ + c1 |0⟩ σx c0 |0⟩ + c1 |1⟩
10 c0 |0⟩ − c1 |1⟩ σz c0 |0⟩ + c1 |1⟩
11 c0 |1⟩ − c1 |0⟩ iσy c0 |0⟩ + c1 |1⟩

In the end of the protocol Bob’s qubit B is in the state |ψ⟩B = c0 |0⟩ + c1 |1⟩, which is the
initial state of Alice’s qubit A′.

The protocol does not depend on the state to be teleported. Also, the Bell state |Φ+⟩AB

is destroyed in this procedure, thus teleportation of one qubit consumes one Bell state.

Quantum teleportation can also be applied to teleport a part of Alice’s subsystem, see
also Fig. 4.2. If Alice is in possession of two qubits C and D in a quantum state |ψ⟩CD,
she can teleport the particle D to Bob by using a Bell state. In this way, Alice and Bob
will end up sharing the two-qubit state |ψ⟩which was initially in Alice’s laboratory.

Systems of larger dimension d > 2 can be teleported as follows: if d = 2n for some integer
n, then the particle A′ (which is the particle Alice wants to teleport) can be regarded
as an n-qubit system: A′ = A′1A′2 . . .A

′
n. Teleportation of A′ can then be achieved by

teleporting each of the qubits A′i , thus consuming n = log2 d Bell states. If log2 d is not
an integer, we define n =

⌈
log2 d

⌉
. The state |ψ⟩A

′

can then be written as

|ψ⟩A
′

=

2n
−1∑

i=0

ci |i⟩A
′

,

and all coefficients ci are zero for i ≥ d. Thus, also in this case we can regard A′ as being
composed of n qubits, and teleport each of the qubits individually.

Similarly, if Alice is in possession of a bipartite state |ψ⟩CD, where C and D are now gen-
eral quantum systems of arbitrary (but finite) dimension, Alice can teleport the particle
D to Bob. The number of Bell states required for this procedure can be determined by
the following proposition.

Figure 4.2: Quantum teleportation of a part of a quantum system.

23



4 Applications of entanglement

Proposition 4.1. For a state

|ψ⟩CD =

k−1∑
i=0

√
λi |i⟩C ⊗ |i⟩D

with k nonzero Schmidt coefficients the teleportation of D can be done by consuming
⌈
log2 k

⌉
Bell states.

4.2 Superdense coding

Figure 4.3: Superdense coding.

Suppose that Alice and Bob share two qubits in the state |Φ+⟩. They can use |Φ+⟩ to
communicate two bits of information with a single qubit via the following procedure.

1. Alice applies a unitary on her qubit, depending on which two bits she wants to
send to Bob. The concrete unitaries are given by

Encoded bits 00 01 10 11
Alice applies 1 σz σx iσy
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4 Applications of entanglement

The resulting states are given as

00 : |Φ+⟩ → (1 ⊗ 1) |Φ+⟩ = |Φ+⟩ ,

01 : |Φ+⟩ → (σz ⊗ 1)
1
√

2
(|00⟩ + |11⟩) =

1
√

2
(|00⟩ − |11⟩) = |Φ−⟩ ,

10 : |Φ+⟩ → (σx ⊗ 1)
1
√

2
(|00⟩ + |11⟩) =

1
√

2
(|10⟩ + |01⟩) = |Ψ+⟩ ,

11 : |Φ+⟩ →
(
iσy ⊗ 1

) 1
√

2
(|00⟩ + |11⟩) =

1
√

2
(− |10⟩ + |01⟩) = |Ψ−⟩ .

2. Alice sends her qubit to Bob, who is now in possession of one of the four Bell
states.

3. Bob applies a von Neumann measurement in the Bell basis. From his outcome, he
can directly read off the two bits encoded by Alice.

Note that two bits is the maximal amount of classical information that one qubit can
carry.
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5 Entanglement distillation and dilution

5.1 Shannon and von Neumann entropy

Consider an integer random variable x with probability distribution p(x). A sequence
of independent and identically distributed variables xi has probability distribution

p(x1, . . . , xm) = p(x1)p(x2) . . . p(xm).

The Shannon entropy of the probability distribution is defined as

H(p(x)) = −
∑

x
p(x) log2 p(x).

Correspondingly, we can define the von Neumann entropy of a quantum state ρ with
eigenvalues λi:

S(ρ) = −Tr[ρ log2 ρ] = −
∑

i

λi log2 λi.

5.2 Typical sequences

Consider a sequence x1, x2, . . . , xm of m independent and identically distributed random
variables xi. For large m certain sequences will be suppressed, they are atypical. Typical
sequences are those that are most likely to appear for large m. A sequence of independent
and identically distributed random variables xi with entropy H(p(x)) is called ϵ-typical
if

2−m(H(p(x))+ϵ)
≤ p(x1, . . . , xm) ≤ 2−m(H(p(x))−ϵ). (5.1)

Example. Consider a biased coin, where we associate 0 with “heads” and 1 with
“tails”. We further define p(0) = 2/3 and p(1) = 1/3, see Fig. 5.1. For ϵ = 0.01 and
m = 10 we obtain

p(1, 1, . . . , 1, 1) =
1

310
≈ 2 × 10−5,

2−m(H(p(x))±ϵ)
≈ 2 × 10−3.

Thus, the sequence 1, 1, . . . , 1, 1 is not ϵ-typical.
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5 Entanglement distillation and dilution

p(heads) = p(0) = 2
3 p(tails) = p(1) = 1

3

Figure 5.1: Biased coin as an example of a random variable

Theorem of typical sequences.
(1) Fix ϵ > 0. For any δ > 0, for sufficiently large m the probability that a sequence is
ϵ-typical is at least 1 − δ: ∑

x ϵ−typical

p(x1)p(x2) . . . p(xm) > 1 − δ.

(2) For any fixed ϵ > 0 and δ > 0, for sufficiently large m, the number |T(m, ϵ)| of
ϵ-typical sequences satisfies

(1 − δ)2m(H(p(x))−ϵ)
≤ |T(m, ϵ)| ≤ 2m(H(p(x))+ϵ).
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5 Entanglement distillation and dilution

5.3 Entanglement dilution

Figure 5.2: Entanglement dilution

Assume that Alice and Bob share n singlets |Ψ−⟩. Entanglement dilution is an LOCC
protocol transforming |Ψ−⟩⊗n into m copies of another state |ψ⟩. The procedure can have
an error which should vanish in the asymptotic limit n→∞.

The minimal fraction n/m in the limit n→∞ is called entanglement cost of |ψ⟩.

Proposition 5.1. The entanglement cost of a state |ψ⟩ is at most S(ρψ), where ρψ = TrB[|ψ⟩⟨ψ|]
is the reduced state of Alice.

Proof. Suppose an entangled state |ψ⟩ has Schmidt decomposition

|ψ⟩ =
∑

x

√
p(x) |x⟩A ⊗ |x⟩B .
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5 Entanglement distillation and dilution

The state |ψm⟩ := |ψ⟩⊗m can be written as

|ψm⟩ =
∑

x1,x2,...,xm

√
p(x1)p(x2) . . . p(xm) |x1x2 . . . xm⟩

A
⊗ |x1x2 . . . xm⟩

B . (5.2)

We now define a new quantum state |ϕm⟩ by omitting terms x1, . . . , xm which are not
ϵ-typical:

|ϕm⟩ =
∑

x ϵ−typical

√
p(x1)p(x2) . . . p(xm) |x1x2 . . . xm⟩

A
⊗ |x1x2 . . . xm⟩

B . (5.3)

Note that |ϕm⟩ is in general not normalized. We normalize it by defining

|ϕ′m⟩ =
1√

⟨ϕm|ϕm⟩
|ϕm⟩ . (5.4)

Consider now the scalar product ⟨ψm|ϕ′m⟩:

⟨ψm|ϕ
′

m⟩ =
1√

⟨ϕm|ϕm⟩

∑
x ϵ−typical

p(x1)p(x2) . . . p(xm) =
√ ∑

x ϵ−typical

p(x1)p(x2) . . . p(xm).

Part (1) of the theorem of typical sequences implies that

lim
m→∞

 ∑
x ϵ−typical

p(x1)p(x2) . . . p(xm)

 = 1,

and thus
lim

m→∞
⟨ψm|ϕ

′

m⟩ = 1.

This means that for large m the state |ϕ′m⟩ is a good approximation of |ψm⟩ = |ψ⟩
⊗m.

Alice now prepares the state |ϕ′m⟩ locally, and then teleports what should be Bob’s half
of the state |ϕ′m⟩ over to Bob. In this way Alice and Bob end up sharing the state |ϕ′m⟩,
which is a good approximation of |ψ⟩⊗m. By part (2) of the theorem of typical sequences,
the number of terms in the sum (5.3) is at most

2m(H(p(x))+ϵ) = 2m(S(ρψ)+ϵ).

This implies that the state |ϕ′m⟩ has at most 2m(S(ρψ)+ϵ) nonzero Schmidt coefficients. By
using Proposition 4.1, Alice can teleport half of the state |ϕ′m⟩ to Bob by consuming at
most

n =
⌈
m(S(ρψ) + ϵ)

⌉
Bell states. Since ϵ can be chosen arbitary small, we can bring the ratio n/m arbitrary
close to S(ρψ) by choosing m large enough. Thus, the entanglement cost of |ψ⟩ is at most
S(ρψ). □
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5 Entanglement distillation and dilution

5.4 Entanglement distillation

Entanglement distillation can be seen as the reverse process of entanglement dilution.
Assume that Alice and Bob share m copies of the state |ψ⟩. Entanglement distillation is
an LOCC protocol transforming |ψ⟩⊗m into n singlets |Ψ−⟩. The procedure can have an
error which should vanish in the asymptotic limit m→∞.

The maximal fraction n/m in the limit m→∞ is called distillable entanglement of |ψ⟩.

Proposition 5.2. The distillable entanglement of a state |ψ⟩ is at least S(ρψ).

Proof. Suppose that Alice and Bob share m copies of the state |ψ⟩, see also Eq. (5.2). Alice
first performs a local projective measurement with Kraus operators

Π0 =
∑

x ϵ−typical

|x1x2 . . . xm⟩⟨x1x2 . . . xm|

and Π1 = 1 −Π0. The probability of measurement outcome 0 is

p0 = Tr[(Π0 ⊗ 1) |ψm⟩⟨ψm|] =
∑

x ϵ−typical

p(x1)p(x2) . . . p(xm),

and the post-measurement state of Alice and Bob is

1
√

p0
(Π0 ⊗ 1) |ψm⟩ =

1
√

p0

∑
x ϵ−typical

√
p(x1)p(x2) . . . p(xm) |x1x2 . . . xm⟩

A
⊗ |x1x2 . . . xm⟩

B ,

(5.5)
which is equivalent to |ϕ′m⟩ in Eq. (5.4). The probability p0 converges to 1 in the limit
m→∞ due to part (1) of the theorem of typical sequences.

The (unnormalized) vector |ϕm⟩ in Eq. (5.3) has Schmidt coefficients of the form p(x1)p(x2) . . . p(xm)
with an ϵ-typical sequence x1, . . . , xm. By definition of ϵ-typical sequences [see Eq. (5.1)],
the largest Schmidt coefficient of |ϕm⟩ is at most

p(x1)p(x2) . . . p(xm) ≤ 2−m(H(p(x))−ϵ) = 2−m(S(ρψ)−ϵ),

where ρψ = TrB[|ψ⟩⟨ψ|].

The post-measurement state of Alice and Bob in Eq. (5.5) corresponds to the state |ϕ′m⟩
in Eq. (5.4), and can be written as

|ϕ′m⟩ =
|ϕm⟩√
⟨ϕm|ϕm⟩

=
|ϕm⟩√∑

x ϵ−typical p(x1)p(x2) . . . p(xm)
.
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5 Entanglement distillation and dilution

By part (1) of the theorem of typical sequences, for any δ > 0 and m large enough we
have ∑

x ϵ−typical

p(x1)p(x2) . . . p(xm) > 1 − δ.

Thus, the largest Schmidt coefficient of |ϕ′m⟩ is at most 2−m(S(ρψ)−ϵ)/(1 − δ).

Choose n such that
2−m(S(ρψ)−ϵ)

1 − δ
≤ 2−n. (5.6)

Since the Schmidt coefficients of |ϕ′m⟩ correspond to eigenvalues of ρϕ′m , all eigenvalues
of ρϕ′m are at most 2−n. Thus, the vector λ⃗ϕ′m , containing eigenvalues of ρϕ′m in decreasing
order, is majorized by the vector

v⃗ = (2−n, 2−n, . . . , 2−n︸              ︷︷              ︸
2n times

, 0, . . . , 0),

where zeros are added to make the dimension of v⃗ equal to the dimension of λ⃗ϕ′m (due
to Eq. (5.6) the dimension of λ⃗ϕ′m is at least 2n). By theorem 2.1, the state |ϕ′m⟩ can then
be converted into n singlets via LOCC. Since ϵ and δ can be chosen arbitrary small,
analyzing Eq. (5.6) we can bring the fraction n/m arbitrary close to S(ρψ) in the limit of
large m. □

Propositions 5.1 and 5.2 provide bounds on the distillable entanglement and entangle-
ment cost of a pure state. We will now prove that these bounds are optimal.

Theorem 5.1. The distillable entanglement and entanglement cost of a state |ψ⟩ are equal to
S(ρψ).

Proof. Assume by contradiction that there exists a hypothetical LOCC protocol con-
verting m copies of |ψ⟩ into n singlets such that n/m ≈ S > S(ρψ) with asymptotically
vanishing error in the limit m→∞.

Assume now that Alice and Bob start with k singlets |Ψ−⟩. Due to proposition 5.1,
for large k there exists an LOCC protocol converting the singlets into |ψ⟩⊗m such that
k/m ≈ S(ρψ). In the next step, Alice and Bob use the hypothetical protocol from the
previous paragraph, converting |ψ⟩⊗m into |Ψ−⟩⊗n with n/m ≈ S > S(ρψ). Note that

n ≈ mS = k
S

S(ρψ)
> k.

In summary, Alice and Bob started with k singlets, and ended up with n > k singlets.
Noting that the number of singlets cannot be increased via LOCC, the contradiction
follows. This proves that the distillable entanglement of |ψ⟩ is equal to S(ρψ). The
proof that the entanglement cost of |ψ⟩ must be equal to S(ρψ) follows similar lines of
reasoning. □
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5 Entanglement distillation and dilution

5.5 LOCC and separable operations

Any LOCC protocol is a separable operation:

ρAB
→ ΛLOCC

(
ρAB

)
=

∑
i

Ai ⊗ Biρ
ABA†i ⊗ B†i ,

where Ai ⊗ Bi fulfill the completeness condition for Kraus operators:∑
i

A†i Ai ⊗ B†i Bi = 1AB.

Not every separable operation is an LOCC.

Any stochastic LOCC transformation has the form

ρAB
→

1
p

∑
i

Ai ⊗ Biρ
ABA†i ⊗ B†i , (5.7)

where ∑
i

A†i Ai ⊗ B†i Bi ≤ 1AB,

and the probability of the transformation is given as

p = Tr

∑
i

Ai ⊗ Biρ
ABA†i ⊗ B†i

 .
A stochastic LOCC transformation mapping HAB onto the space of two qubits has the
form (5.7), where Ai is a 2× dA rectangular matrix, and Bi is a 2× dB rectangular matrix.
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5 Entanglement distillation and dilution

5.6 Entanglement distillation for mixed states

Figure 5.3: Mixed-state entanglement distillation

We now consider entanglement distillation for mixed states. Assume that Alice and Bob
share many copies of a mixed state with density matrix ρ, and want to convert them
into singlets via LOCC. We first note that Alice and Bob cannot distill any singlets if the
shared state is separable. This is because for a separable state ρ also ρ⊗m is separable.
As discussed in Section 5.5, any stochastic LOCC protocol brings the state ρ⊗m to the
state

σ =
1
p

∑
j

A j ⊗ B jρ
⊗mA†j ⊗ B†j

with probability p = Tr[
∑

j A j⊗B jρ⊗mA†j ⊗B†j ]. Since ρ⊗m is separable, also σ is separable.
This implies that σ cannot be close to a singlet, even in the asymptotic limit m→∞.

The above arguments show that separable states cannot be distilled into singlets. The
following theorem extends this observation to all states with positive partial transpose.

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.
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5 Entanglement distillation and dilution

Proof. If ρ can be distilled into singlets, there must exist a stochastic LOCC protocol
bringing ρ⊗m arbitrary close to a singlet for large m. Then, there must also exist a
stochastic LOCC protocol transforming ρ⊗m into an entangled two-qubit state σ2q. A
general stochastic LOCC transformation converting ρ⊗m into a two-qubit state has the
form (see Section 5.5)

σ2q =
1
p

∑
j

A j ⊗ B jρ
⊗mA†j ⊗ B†j ,

with p = Tr[
∑

j A j ⊗ B jρ⊗mA†j ⊗ B†j ] and rectangular matrices A j and B j.

Since σ2q is entangled, there must be an integer i such that

σi =
1
pi

Ai ⊗ Biρ
⊗mA†i ⊗ B†i

is an entangled state, where pi = Tr[Ai ⊗ Biρ⊗mA†i ⊗ B†i ]. Recall that Ai is a rectangular
2 × dA matrix, and Bi is a rectangular 2 × dB matrix. Thus, Ai and Bi can be written as

Ai = |0⟩⟨α0| + |1⟩⟨α1| ,

Bi = |0⟩⟨β0| + |1⟩⟨β1| ,

where |αi⟩ ∈ HA and |βi⟩ ∈ HB are (possibly unnormalized) vectors.

Let PA be a projector onto the subspace spanned by |α0⟩ and |α1⟩, and PB be a projector
onto the subspace spanned by |β0⟩ and |β1⟩. Then it holds

σi =
1
pi

Ai ⊗ Biρ
⊗mA†i ⊗ B†i =

1
pi

Ai ⊗ Bi

(
PA ⊗ PBρ

⊗mPA ⊗ PB
)

A†i ⊗ B†i .

Since σi is an entangled state, also the state

µ =
PA ⊗ PBρ⊗mPA ⊗ PB

Tr
[
PA ⊗ PBρ⊗mPA ⊗ PB

]
must be entangled.

Consider now an orthonormal product basis | fi⟩ ⊗ |gk⟩ such that

PA = | f0⟩⟨ f0| + | f1⟩⟨ f1| ,
PB = |g0⟩⟨g0| + |g1⟩⟨g1| .

Expanded in the basis | fi⟩ ⊗ |gk⟩, the state µ takes the form

µ =


τ2q 0 · · · 0
0 0
...

. . .
0 0

 , (5.8)
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5 Entanglement distillation and dilution

where τ2q is a 4 × 4 density matrix, which can be interpreted as a two-qubit state.

For evaluating the partial transpose µTA we can focus on the partial transpose τTA
2q . If

τ2q had positive partial transpose, then by Theorem 3.2 τ2q must be separable, and thus
also µ is separable, which is a contradiction. Thus, τTA

2q must have negative eigenvalues,
i.e., there exists a vector

|ψ⟩ =
1∑

i,k=0

cik | fi⟩ |gk⟩

such that
⟨ψ|τTA

2q |ψ⟩ < 0.

Due to Eq. (5.8) we have ⟨ψ|τTA
2q |ψ⟩ = ⟨ψ|µ

TA |ψ⟩, which implies that

⟨ψ|µTA |ψ⟩ < 0.

Using the equalities(
PA ⊗ PBρ

⊗mPA ⊗ PB
)TA
= PA ⊗ PB

(
ρ⊗m

)TA
PA ⊗ PB,

PA ⊗ PB |ψ⟩ = |ψ⟩

it follows that

0 > ⟨ψ|µTA |ψ⟩ =
⟨ψ|

(
PA ⊗ PBρ⊗mPA ⊗ PB

)TA
|ψ⟩

Tr
[
PA ⊗ PBρ⊗mPA ⊗ PB

] =

=
⟨ψ|PA ⊗ PB

(
ρ⊗m)TA PA ⊗ PB|ψ⟩

Tr
[
PA ⊗ PBρ⊗mPA ⊗ PB

] =
⟨ψ|

(
ρ⊗m)TA

|ψ⟩

Tr
[
PA ⊗ PBρ⊗mPA ⊗ PB

] ,
implying that ρ⊗m has non-positive partial transpose. This also implies that ρTA is not
positive semidefinite. □

5.7 Matrix realignment criterion and bound entanglement

Given a 2 × 2 matrix

M =
(

M00 M01
M10 M11

)
we can “vectorize” it by defining the vector

M⃗ = (M00,M10,M01,M11)T. (5.9)
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Consider now a two-qubit density matrix

ρ =


ρ00 ρ01 ρ02 ρ03
ρ10 ρ11 ρ12 ρ13
ρ20 ρ21 ρ22 ρ23
ρ30 ρ31 ρ32 ρ33

 =
(

X Y
Y† Z

)

with 2 × 2 matrices X, Y and Z. We define the realigned matrix ρ̃ as follows:

ρ̃ =


X⃗T

−→
Y†T

Y⃗T

Z⃗T

 =

ρ00 ρ10 ρ01 ρ11
ρ20 ρ30 ρ21 ρ31
ρ02 ρ12 ρ03 ρ13
ρ22 ρ32 ρ23 ρ33

 .

It is straightforward to extend these definitions to dimensions larger than qubits. In the
following, we will consider the trace norm of the realigned matrix.

Trace norm. For a general matrix M with singular values si the trace norm is defined
as

||M||1 = Tr
√

M†M =
∑

i

si.

The trace norm fulfills the triangle inequality:

||A + B||1 ≤ ||A||1 + ||B||1

for any two matrices A and B. The trace norm is also absolutely homogeneous:

||aM||1 = |a| · ||M||1

for any matrix M and any a ∈ C. More details about the trace norm can also be found
in Section 6.2.

As we will see in the following proposition, the trace norm of ρ̃ can be used to detect
entanglement in the state ρ.

Proposition 5.3. Any separable state ρ fulfills ||ρ̃||1 ≤ 1.

Proof. Let ρ be a pure product state: ρ = |ψ⟩⟨ψ| ⊗ |ϕ⟩⟨ϕ|. We “vectorize” the matrices
|ψ⟩⟨ψ| and |ϕ⟩⟨ϕ| in the same way as in Eq. (5.9), with the corresponding vectors ψ⃗ and
ϕ⃗. Note that

|ψ⃗| = |ϕ⃗| = 1.
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The realigned matrix ρ̃ can be written as

ρ̃ = ψ⃗ · ϕ⃗T.

Note that the trace norm of ρ̃ is given as

||ρ̃||1 = 1.

Consider now a separable state

ρsep =
∑

i

pi |ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi| .

The realigned matrix ρ̃sep takes the form

ρ̃sep =
∑

i

pi
−→
ψi ·
−→
ϕi

T,

where
−→
ψi and

−→
ϕi are “vectorized” matrices |ψi⟩⟨ψi| and |ϕi⟩⟨ϕi|. For the trace norm of

ρ̃sep we obtain

||ρ̃sep||1 =

∥∥∥∥∥∥∥∑i

pi
−→
ψi ·
−→
ϕi

T

∥∥∥∥∥∥∥
1

≤

∑
i

pi

∥∥∥∥−→ψi ·
−→
ϕi

T
∥∥∥∥

1
= 1,

where we have used the fact that the trace norm is absolutely homogeneous and fulfills
the triangle inequality. □

Using the above proposition, we will now show that there exist entangled states which
cannot be distilled into singlets. Such states are called bound entangled, since they
require singlets for their creation, but cannot be converted into singlets even asymptot-
ically. For dA = dB = 3 consider the following state for 0 ≤ a ≤ 1:

ρa =
1

8a + 1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√

1−a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2 0 1+a
2


.

This state has positive partial transpose for 0 ≤ a ≤ 1, but ||ρ̃a||1 > 1 for all 0 < a < 1.
Thus, for all 0 < a < 1 the state ρa is a bound entangled state.

It is an open question whether all quantum states with non-positive partial transpose
can be distilled into singlets.
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6 Quantification of entanglement

Having characterized entanglement, we are now interested to quantify the amount of
entanglement in a given state. For this we will consider functions of the state E(ρ) which
fulfill the following properties:

1. E(ρ) ≥ 0, and equality holds if ρ is separable,

2. E does not increase under local operations and classical communication:

E(ΛLOCC[ρ]) ≤ E(ρ) (6.1)

for any LOCC protocol ΛLOCC.

Interestingly, the second property implies that for dA = dB = d the state |Φ+d ⟩ and any
other maximally entangled states (see Section 2.5) has indeed the maximal amount of
entanglement among all states. This is a direct consequence of Theorem 2.1, stating that
|Φ+d ⟩ can be converted into any pure state via LOCC. Note that this also implies that |Φ+d ⟩
can be converted into any mixed state via LOCC.

Functions that fulfill the above two properties are also called entanglement measures.
Many entanglement measures have additional properties, such as convexity:

E

∑
i

piρ
AB
i

 ≤∑
i

piE
(
ρAB

i

)
.

Moreover, many entanglement measures are nonincreasing on average under LOCC:∑
i

qiE
(
σAB

i

)
≤ E

(
ρAB

)
, (6.2)

where the states σAB
i and probabilities qi are obtained from ρAB by means of LOCC. Con-

dition (6.2) is also called strong monotonicity. Note that strong monotonicity together
with convexity implies Eq. (6.1).

In the following, we will study examples of entanglement measures.
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6.1 Entanglement of formation

Entanglement of formation is defined for pure states as

E f (|ψ⟩
AB) = S(ρA),

where ρA = TrB[|ψ⟩⟨ψ|AB] is the reduced state of Alice. This quantity is also called
entanglement entropy of |ψ⟩AB. For mixed states ρAB we define

E f (ρAB) = min
∑

i

piE(|ψi⟩
AB),

and the minimum is taken over all decompositions {pi, |ψi⟩
AB
} such thatρAB =

∑
i pi |ψi⟩⟨ψi|

AB.
The entanglement of formation can be interpreted as the minimal average entanglement
required to create the state ρAB.

We will first show that E f (ρAB) ≥ 0. For this, note that for any decomposition {pi, |ψi⟩
AB
}

the average entanglement
∑

i piE f (|ψi⟩
AB) is nonnegative. Moreover, for a separable

state σAB there exists a decomposition into product states |ψi⟩
AB = |αi⟩

A
⊗ |βi⟩

B with
E f (|ψi⟩

AB) = 0, which implies that E f (σAB) = 0 for any separable state.

Proposition 6.1. Entanglement of formation is convex:

E f

∑
i

piρ
AB
i

 ≤∑
i

piE f

(
ρAB

i

)
.

Proof. Consider a decomposition of the state ρAB
i =

∑
j qi j |ψi j⟩⟨ψi j|

AB with the property
that

E f (ρAB
i ) =

∑
j

qi jE f

(
|ψi j⟩

AB
)
.

We then obtain ∑
i

piE f

(
ρAB

i

)
=

∑
i j

piqi jE f

(
|ψi j⟩

AB
)
.

We now define the state σAB =
∑

i piρAB
i , and note now that σAB can also be expressed as

σAB =
∑

i

piρ
AB
i =

∑
i j

piqi j |ψi j⟩⟨ψi j|
AB .

Recalling that the entanglement of formation is defined as the minimal average entan-
glement of a state, it must be that

E f

(
σAB

)
≤

∑
i

piqi jE f

(
|ψi j⟩

AB
)
.
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Combining these results, we obtain

E f

∑
i

piρ
AB
i

 = E f

(
σAB

)
≤

∑
i

piE f

(
ρAB

i

)
,

which completes the proof. □

6.1.1 Monotonicity under LOCC

Our next aim is to show that the entanglement of formation does not increase under
local operations and classical communication. For achieving this, we will first show that
E f is monotonic on average under local measurements for pure states. Consider a pure
state |ψ⟩AB, and suppose that Alice applies a local measurement with Kraus operators
{Ki}. The corresponding post-measurement states are

|ϕi⟩
AB =

1
√

pi
(Ki ⊗ 1) |ψ⟩AB

with probability
pi = Tr

[
Ki ⊗ 1 |ψ⟩⟨ψ|

AB K†i ⊗ 1
]
,

see Section 1.2. We now have the following proposition.

Proposition 6.2. For pure states |ψ⟩AB entanglement of formation does not increase on average
under local measurements on Alice’s side:∑

i

piE f (|ϕi⟩
AB) ≤ E f (|ψ⟩

AB).

Proof. Note that local measurements on Alice’s side do not change the state of Bob, and
thus

ρB = TrA

[
|ψ⟩⟨ψ|AB

]
=

∑
i

pi TrA

[
|ϕi⟩⟨ϕi|

AB
]
=

∑
i

piσ
B
i ,

where we defined σB
i = TrA

[
|ϕi⟩⟨ϕi|

AB
]
. By definition of E f we further have1

E f (|ψ⟩
AB) = S(ρB),

∑
i

piE f (|ϕi⟩
AB) =

∑
i

piS(σB
i ).

Combining these results and using the fact that the von Neumann entropy is concave
we obtain ∑

i

piE f (|ϕi⟩
AB) =

∑
i

piS(σB
i ) ≤ S

∑
i

piσ
B
i

 = S(ρB) = E f (|ψ⟩
AB).

□
1Note that for a pure state |ψ⟩AB it holds S(ρA) = S(ρB).
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We will now show that this proposition also extends to mixed states ρAB. Now, if Alice
performs a local measurement with Kraus operators {Ki}, the outcome probability and
the post-measurement states are given as

pi = Tr
[
Ki ⊗ 1ρ

ABK†i ⊗ 1
]
,

σAB
i =

1
pi

Ki ⊗ 1ρ
ABK†i ⊗ 1,

see Section 1.2. We will now prove the following result.

Proposition 6.3. For all mixed states ρAB the entanglement of formation does not increase on
average under local measurements on Alice’s side:∑

i

piE f (σAB
i ) ≤ E f (ρAB).

Proof. Consider an optimal decomposition {q j, |ψ j⟩
AB
} of the state ρAB such that ρAB =∑

j q j |ψ j⟩⟨ψ j|
AB and

E f (ρAB) =
∑

j

q jE f (|ψ j⟩
AB). (6.3)

We now define

pi j = Tr
[
(Ki ⊗ 1) |ψ j⟩⟨ψ j|

(
K†i ⊗ 1

)]
, (6.4a)

|ϕi j⟩
AB =

1
√pi j

(Ki ⊗ 1) |ψ j⟩
AB , (6.4b)

and note that ∑
j

q jpi j = pi.

For the entanglement of formation of the states σAB
i we obtain

E f

(
σAB

i

)
= E f

(
1
pi

Ki ⊗ 1ρ
ABK†i ⊗ 1

)
= E f

∑
j

q j

pi
Ki ⊗ 1 |ψ j⟩⟨ψ j|

AB K†i ⊗ 1


= E f

∑
j

q jpi j

pi
|ϕi j⟩⟨ϕi j|

AB

 .
Using convexity of E f further gives us

E f

(
σAB

i

)
≤

∑
j

q jpi j

pi
E f

(
|ϕi j⟩

AB
)
.
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Multiplying this inequality with pi on both sides and taking the sum over i gives∑
i

piE f

(
σAB

i

)
≤

∑
i, j

q jpi jE f

(
|ϕi j⟩

AB
)
.

Now note that the states |ϕi j⟩
AB and probabilities pi j are obtained from |ψ j⟩

AB via a local
measurement on Alice’s side, see Eqs. (6.4). Thus, from Proposition 6.2 we have∑

i

pi jE f

(
|ϕi j⟩

AB
)
≤ E f

(
|ψ j⟩

AB
)
,

which then leads to∑
i

piE f

(
σAB

i

)
≤

∑
j

q j

∑
i

pi jE f

(
|ϕi j⟩

AB
)
≤

∑
j

q jE f

(
|ψ j⟩

AB
)
.

The proof is complete by recalling that {q j, |ψ j⟩
AB
} is an optimal decomposition of ρAB,

see Eq. (6.3). □

While the above proposition concerns only local operations on Alice’s side, it is straight-
forward to show that it generalizes to any LOCC protocol, where Alice and Bob perform
local measurements and exchange their measurement outcomes via a classical channel.
In the following proposition, σAB

i denote states which can be obtained from an initial
state ρAB via an arbitrary LOCC protocol, with corresponding probability pi.

Proposition 6.4. Entanglement of formation does not increase on average under local operations
and classical communication: ∑

i

piE f (σAB
i ) ≤ E f (ρAB).

With the above result, we can finally prove the following theorem.

Theorem 6.1. Entanglement of formation does not increase under LOCC:

E f (ΛLOCC[ρ]) ≤ E f (ρ)

for any LOCC protocol ΛLOCC.

Proof. Let ΛLOCC be an LOCC protocol leading to states σAB
i with probability pi when

applied to a state ρAB:
ΛLOCC[ρAB] =

∑
i

piσ
AB
i .

We use Proposition 6.4 and convexity of E f :

E f (ΛLOCC[ρAB]) = E f

∑
i

piσ
AB
i

 ≤∑
i

piE f (σAB
i ) ≤ E f (ρAB).

□
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6.1.2 Evaluating entanglement of formation for two qubits

Given a general state of two qubits, we will now give a formula for calculating the
entanglement of formation. For this, we first define the concurrence of a state ρAB:

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4},

where λi are the square roots (in decreasing order) of the eigenvalues of ρρ̃, with

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),

the Pauli matrix σy =

(
0 −i
i 0

)
, and ρ∗ denotes entry-wise complex conjugation. Con-

currence can be seen as a measure of entanglement on its own right, as it is nonnegative,
and zero for any separable state.

Having defined the concurrence, the entanglement of formation of ρAB can be given as

E f (ρAB) = h

1 +
√

1 − C2(ρAB)
2


with the binary entropy h(x) = −x log2 x − (1 − x) log2(1 − x).

6.2 Trace distance and fidelity

For two quantum states ρ and σ the trace distance is defined as

Dt(ρ, σ) =
1
2

∥∥∥ρ − σ∥∥∥1 (6.5)

with the trace norm ∥M∥1 = Tr
√

M†M, see also page 36. It holds that Dt(ρ, σ) = 0 if
and only if ρ = σ, and 1 ≥ D(ρ, σ) > 0 otherwise. Moreover, the trace distance does not
increase under quantum operations, i.e.,

Dt(Λ[ρ],Λ[σ]) ≤ Dt(ρ, σ) (6.6)

for any quantum operation Λ. Eq. (6.6) is also called data-processing inequality, and is
a consequence of the following theorem.

Theorem 6.2. For any Hermitian d× d matrix H and any trace preserving positive linear map
Λ acting on the Hilbert space of dimension d it holds that

∥Λ (H)∥1 ≤ ∥H∥1 . (6.7)
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Proof. Let Λ (H) = Q+ − Q− and H = P+ − P− be decompositions into orthogonal parts
Q± ≥ 0 and P± ≥ 0. It follows that

Tr (Q+) ≤ Tr (Λ [P+]) ,
Tr (Q−) ≤ Tr (Λ [P−]) .

Recalling that Λ is trace preserving, we further have

Tr (Q+ +Q−) ≤ Tr (P+ + P−) .

The proof is complete using the fact that ||H||1 = Tr(P+ + P−) and ||Λ(H)||1 = Tr(Q+ +
Q−). □

In the following, we will make use of the following proposition.

Proposition 6.5. For any unitary U it holds that

|Tr (AU)| ≤ ∥A∥1 .

Proof. By the polar decomposition we have

|Tr (AU)| =
∣∣∣∣Tr

(
V
√

A†AU
)∣∣∣∣ = ∣∣∣∣∣Tr

([
A†A

]1/4 [
A†A

]1/4
UV

)∣∣∣∣∣ .
Using the Cauchy-Schwarz inequality

∣∣∣∣Tr
(
X†Y

)∣∣∣∣2 ≤ Tr
(
X†X

)
Tr

(
Y†Y

)
and setting

X =
[
A†A

]1/4
, Y =

[
A†A

]1/4
UV

we obtain

|Tr (AU)| ≤
√

Tr
√

A†A Tr
(
V†U†

√

A†AUV
)
= Tr

√

A†A = ∥A∥1 .

□

A quantity which is closely related to the trace distance is the fidelity. For two quantum
states ρ and σ the fidelity is defined as

F(ρ, σ) = Tr
√
√
ρσ
√
ρ.

The fidelity is related to the trace distance as follows:

1 − F(ρ, σ) ≤ Dt(ρ, σ) ≤
√

1 − F(ρ, σ)2. (6.8)

From Eq. (6.8) we see that 0 ≤ F(ρ, σ) ≤ 1, and F(ρ, σ) = 1 if and only if ρ = σ.

Let now |ψ⟩ = |ψ⟩AB and |ϕ⟩ = |ϕ⟩AB be purifications of the states ρ = ρB and σ = σB.
The following theorem provides a connection between the fidelity and the purifications
of the states.
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6 Quantification of entanglement

Theorem 6.3. For any two states ρ and σ it holds that

F
(
ρ, σ

)
= max
|ψ⟩,|ϕ⟩

∣∣∣⟨ψ|ϕ⟩∣∣∣ ,
where the maximum is taken over all purifications |ψ⟩ of ρ and |ϕ⟩ of σ.

Proof. We can write any purification of ρ and σ as follows:

|ψ⟩ =
(
UA ⊗

√
ρUB

)
|m⟩ ,

|ϕ⟩ =
(
VA ⊗

√
σVB

)
|m⟩

with dA = dB, |m⟩ =
∑

i |i⟩ |i⟩ and some unitaries UA, UB, VA, and VB. We obtain∣∣∣⟨ψ|ϕ⟩∣∣∣ = ∣∣∣⟨m|U†AVA ⊗U†B
√
ρ
√
σVB|m⟩

∣∣∣ .
Using the equality

|⟨m|A ⊗ B|m⟩| = Tr
(
A†B

)
we further obtain ∣∣∣⟨ψ|ϕ⟩∣∣∣ = ∣∣∣∣Tr

(
V†AUAU†B

√
ρ
√
σVB

)∣∣∣∣ .
Defining the unitary U = VBV†AUAU†B we arrive at∣∣∣⟨ψ|ϕ⟩∣∣∣ = ∣∣∣∣Tr

(√
ρ
√
σU

)∣∣∣∣ .
Using Proposition 6.5, we see that∣∣∣⟨ψ|ϕ⟩∣∣∣ ≤ ∥∥∥√ρ√σ∥∥∥1 = Tr

√
√
ρσ
√
ρ = F(ρ, σ).

The equality can be attained by choosing a unitary V such that M =
√

MM†V, where
M =

√
ρ
√
σ. Setting VB = V† and UB = UA = VA = 1 the equality is attained. □

Using Theorem 6.3, we will now prove that the fidelity is monotonic under quantum
operations.

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

F
(
Λ

[
ρ
]
,Λ [σ]

)
≥ F

(
ρ, σ

)
.

Proof. Every quantum operation Λ on the system B can be written as

Λ
[
ρB

]
= TrE

[
UBE

(
ρB
⊗ |0⟩⟨0|E

)
U†BE

]
.
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6 Quantification of entanglement

Let |ψ⟩AB and |ϕ⟩AB be purifications of ρB and σB, such that F(ρ, σ) =
∣∣∣⟨ψ|ϕ⟩∣∣∣ (see The-

orem 6.3). Then 1 ⊗ UBE |ψ⟩
AB
|0⟩E is a purification of Λ[ρB] and 1 ⊗ UBE |ϕ⟩

AB
|0⟩E is a

purification of Λ[σB]. Using Theorem 6.3 we obtain

F
(
Λ

[
ρ
]
,Λ [σ]

)
≥

∣∣∣⟨ψ| ⟨0|1 ⊗U†BEUBE |ϕ⟩ |0⟩
∣∣∣ = ∣∣∣⟨ψ|ϕ⟩∣∣∣ = F(ρ, σ).

□

Using fidelity, it is possible to define the Bures distance

Db(ρ, σ) =
√

2 − 2F(ρ, σ) (6.9)

which has similar properties as the trace distance. In particular, Db(ρ, σ) ≥ 0 with
equality if and only if ρ = σ. Moreover, Db fulfills the data-processing inequality:

Db(Λ[ρ],Λ[σ]) ≤ Db(ρ, σ)

for any quantum operation Λ.

6.3 Distance-based entanglement measures

Given a distance function D(ρ, σ) for any pair of density matrices, it is possible to
construct an entanglement measure as

E(ρ) = inf
σ∈S

D(ρ, σ), (6.10)

where the infimum is taken over the set of separable states S, see also Fig. 6.1.

For any distance which fulfills D(ρ, σ) ≥ 0 with equality if ρ = σ, the corresponding
entanglement measure is nonnegative, and zero for separable states. Moreover, if the
distance D fulfills the data-processing inequality, i.e.,

D(Λ[ρ],Λ[σ]) ≤ D(ρ, σ) (6.11)

for any quantum operation Λ, the corresponding entanglement quantifier does not
increase under LOCC. To see this, let σ be a separable state realizing the minimum in
Eq. (6.10), such that E(ρ) = D(ρ, σ). Noting that ΛLOCC[σ] is a separable state, we have

E
(
ΛLOCC[ρ]

)
= min

µ∈S
D

(
ΛLOCC[ρ], µ

)
≤ D

(
ΛLOCC[ρ],ΛLOCC[σ]

)
≤ D(ρ, σ) = E(ρ).

Examples for distances fulfilling Eq. (6.11):
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6 Quantification of entanglement

Figure 6.1: Quantifying entanglement via a distance from the set of separable states.

• Quantum relative entropy2

S(ρ||σ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ],

and the corresponding entanglement measure is called relative entropy of entanglement:
Er(ρ) = minσ∈S S(ρ||σ). It is an upper bound on distillable entanglement. For any
pure state |ψ⟩AB it holds Er(|ψ⟩AB) = S(ρA).

• Bures distance Db(ρ, σ) =
√

2 − 2F(ρ, σ), see also Eq. (6.9).

• Trace distance Dt(ρ, σ) = 1
2 ||ρ − σ||1, see also Eq. (6.5).

6.4 Negativity

Given a bipartite state ρAB, the negativity is defined as

En(ρAB) =
||ρTB ||1 − 1

2
.

The negativity is nonnegative and En(ρAB) = 0 when ρAB is separable or (more generally)
when ρAB has a positive partial transpose.

Theorem 6.5. Negativity does not increase under LOCC:

En
(
ΛLOCC

[
ρAB

])
≤ En

(
ρAB

)
.

2Note that the quantum relative entropy is in general not symmetric and does not fulfill the triangle
inequality.

47



6 Quantification of entanglement

Proof. Recall that any LOCC protocol can be written as (see Section 5.5)

ΛLOCC[ρAB] =
∑

i

Ai ⊗ Biρ
ABA†i ⊗ B†i

with Kraus operators Ai ⊗ Bi fulfilling the completeness relation∑
i

A†i Ai ⊗ B†i Bi = 1AB.

Taking partial transpose with respect to Bob’s system on both sides of this equality we
get ∑

i

A†i Ai ⊗ BT
i B∗i = 1AB,

where we used the fact that the identity matrix 1AB is invariant under partial transpose.
This implies that Ai ⊗ B∗i are also valid Kraus operators.

In the next step, we apply partial transpose onto ΛLOCC[ρAB]:

(
ΛLOCC

[
ρAB

])TB
=

∑
i

Ai ⊗ Biρ
ABA†i ⊗ B†i


TB

=
∑

i

Ai ⊗ B∗iρ
TBA†i ⊗ BT

i .

Taking the trace norm of this expression gives

∥∥∥∥(ΛLOCC

[
ρAB

])TB
∥∥∥∥

1
=

∥∥∥∥∥∥∥∑i

Ai ⊗ B∗iρ
TBA†i ⊗ BT

i

∥∥∥∥∥∥∥
1

=
∥∥∥∥Λ̃ [

ρTB
]∥∥∥∥

1
,

where Λ̃ is the quantum operation corresponding to the Kraus operators {Ai⊗B∗i }. Using
the fact that the trace norm does not increase under quantum operations, we obtain∥∥∥∥Λ̃ [

ρTB
]∥∥∥∥

1
≤

∥∥∥ρTB
∥∥∥

1 ,

which in summary gives us ∥∥∥∥(ΛLOCC

[
ρAB

])TB
∥∥∥∥

1
≤

∥∥∥ρTB
∥∥∥

1 .

Using this in the definition of negativity completes the proof. □

Negativity is also convex, and fulfills strong monotonicity, see Eq. (6.2).
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6 Quantification of entanglement

6.5 Distillable entanglement and entanglement cost

Distillable entanglement has been defined in Section 5.4 as the singlet rate obtainable
from a quantum state ρ via LOCC in the asymptotic limit. Correspondingly, entangle-
ment cost has been defined in Section 5.3 as the singlet rate required to create a state ρ
via LOCC in the asymptotic limit. An explicit formula for distillable entanglement can
be given as

Ed(ρ) = sup
{
r : lim

n→∞

(
inf
Λ

∥∥∥∥Λ [
ρ⊗n

]
− |Φ+⟩⟨Φ+|

⊗⌊rn⌋
∥∥∥∥

1

)
= 0

}
,

where the infimum is taken over all LOCC protocolsΛ. Correspondingly, entanglement
cost can be given as

Ec(ρ) = inf
{
r : lim

n→∞

(
inf
Λ

∥∥∥∥ρ⊗n
−Λ

[
|Φ+⟩⟨Φ+|

⊗⌊rn⌋
]∥∥∥∥

1

)
= 0

}
.

Distillable entanglement and entanglement cost are special cases of asymptotic state-
conversion rates, which can in general be given as

R(ρ→ σ) = sup
{
r : lim

n→∞

(
inf
Λ

∥∥∥∥Λ [
ρ⊗n

]
− σ⊗⌊rn⌋

∥∥∥∥
1

)
= 0

}
.

It holds that

Ed(ρ) = R(ρ→ |Φ+⟩⟨Φ+|), Ec(ρ) =
[
R(|Φ+⟩⟨Φ+| → ρ)

]−1 .

Moreover, for pure states |ψ⟩ and |ϕ⟩we obtain

R(|ψ⟩ → |ϕ⟩) =
S(ρψ)
S(ρϕ)

,

where ρψ is the reduced state of |ψ⟩.

Distillable entanglement and entanglement cost are bounded as

Ed(ρAB) ≤ Ec(ρAB) ≤ E f (ρAB), (6.12a)

Er(ρAB) ≥ Ed(ρAB) ≥ S(ρA) − S(ρAB), (6.12b)

where E f is the entanglement of formation and Er is the relative entropy of entanglement.

As an application, consider a state of the form

ρAB
mc =

∑
i, j

αi j |ii⟩⟨ j j|
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6 Quantification of entanglement

with αi j ∈ C. States of this form are also called maximally correlated. Note that
every pure state is maximally correlated. For the separable state σAB

sep =
∑

i αii |ii⟩⟨ii| it is
straightforward to verify the equality

S(ρAB
mc||σ

AB
sep) = S(ρA

mc) − S(ρAB
mc). (6.13)

From the definition of Er and Eqs. (6.12) we further see that

S(ρAB
mc||σ

AB
sep) ≥ Er(ρAB) ≥ Ed(ρAB) ≥ S(ρA

mc) − S(ρAB
mc).

Together with Eq. (6.13) we arrive at the final expression for the distillable entanglement
of any maximally correlated state:

Ed(ρAB
mc) = S(ρA

mc) − S(ρAB
mc).
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7 Monogamy of entanglement

Consider two qubits A and B in the maximally entangled state |Φ+⟩. Then, neither A
nor B can be entangled (or even correlated) with another qubit C, see Fig. 7.1. This
phenomenon is called entanglement monogamy. Note that this is a purely quantum
phenomenon, since a classical random variable can be maximally correlated with arbi-
trary many classical systems at the same time.

Quantitatively, there is a tradeoff between the amount of entanglement between the
qubits A and B and the qubits A and C. For a pure three-qubit state |ψ⟩ABC it can be
formulated in terms of of concurrence C (see Section 6.1.2):

C2
A:B + C2

A:C ≤ C2
A:BC.

Here, CA:B and CA:C is the concurrence of the reduced state ρAB and ρAC, respectively,
and

CA:BC =

√
2
(
1 − Tr

[
(ρA)2])

is the concurrence of the total state |ψ⟩ABC.

Figure 7.1: Monogamy of entanglement
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