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Advanced quantum information

• Every Wednesday 15:15 - 17:00

• Literature:
• Nielsen and Chuang, Quantum Computation and Quantum

Information, Cambridge University Press (2012)
• Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,

865 (2009)

• Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

• Homework to be submitted via email as a single pdf
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Outline

1 Short review of quantum theory
Quantum states
Quantum measurements and operations

2 Composite systems

3 Theory of quantum entanglement
Definition
Local operations and classical communication
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Quantum states

• Any physical system is completely described by a state
vector |ψ〉 ∈ H

• Qubit: quantum system with Hilbert space dimension 2

• A system which is described by a single state vector is in a
pure state
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Quantum states

• A system which is in the pure state |ψi〉 with probability pi is
described by a density matrix

ρ =
∑

i

pi |ψi〉〈ψi |

where |ψi〉〈ψi | denote projectors onto the vector |ψi〉

• If pmax < 1, the system is in a mixed state
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Quantum states
Example: Consider p0 = p1 = 1/2 and

|ψ0〉 = |0〉 =

(
1
0

)
,

|ψ1〉 = cosα |0〉+ sinα |1〉 =

(
cosα
sinα

)

The density matrix is given by

ρ =
1
2
|0〉〈0|+

1
2
|ψ1〉〈ψ1|

=
1
2

(
1
0

) (
1 0

)
+

1
2

(
cosα
sinα

) (
cosα sinα

)
=

1
2

(
1 0
0 0

)
+

1
2

(
cos2 α cosα sinα

cosα sinα sin2 α

)
=

1
2

(
1 + cos2 α cosα sinα

cosα sinα sin2 α

)
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Quantum states

Properties of density matrices:

• ρ has trace equal to one:

Tr[ρ] = 1

• ρ is positive semidefinite:

〈ψ|ρ|ψ〉 ≥ 0

for any vector |ψ〉

Second property also implies that ρ is Hermitian: ρ† = ρ.
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Quantum measurements and operations

• Consider a spin-1
2 particle in the state

|ψ〉 = a |↑〉+ b |↓〉 =

(
a
b

)

• Measurement postulate of quantum mechanics:
probability to measure “spin up” or “spin down” is given by

p(↑) = |a |2

p(↓) = |b |2 = 1 − p(↑)

• The post-measurement state of the particle is either |↑〉 or |↓〉
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Quantum measurements and operations

• General quantum measurement: collection {Ki} of Kraus
operators that fulfill the completeness equation:

∑
i

K †i Ki = 1d =


1 0

. . .

0 1

 (1)

• Probability for the measurement outcome i:

pi = Tr[KiρK †i ]

• Post-measurement state of the system after occurrence of
outcome i:

ρi =
KiρK †i

pi
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Quantum measurements and operations

• Any set of Kraus operators corresponds to a measurement, in
principle realizable in laboratory

• For any physically realizable measurement there exists a valid
set of Kraus operators
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Quantum measurements and operations

• Positive operator-valued measure (POVM): set of operators

Mi = K †i Ki

• The completeness condition
∑

i K †i Ki = 1d implies∑
i

Mi = 1d

• Probabilities of the outcomes:

pi = Tr[Miρ]
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Quantum measurements and operations

• Projective measurement: operators Ki are orthogonal
projectors

KiKj = δijKi

• Von Neumann measurement: Ki are orthogonal projectors
with rank one
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Quantum measurements and operations

• Any set of Kraus operators {Ki} also defines a quantum
operation:

Λ(ρ) =
∑

i

KiρK †i

• Quantum operations describe the most general change of a
quantum state in a physical process

• They correspond to a special class of linear maps, which are
completely positive and trace preserving (CPTP)
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Outline

1 Short review of quantum theory
Quantum states
Quantum measurements and operations

2 Composite systems

3 Theory of quantum entanglement
Definition
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Composite systems

• Consider two parties, Alice and Bob, with Hilbert spaces HA

and HB

• Total Hilbert space is a tensor product of the subsystem
spaces:

HAB = HA ⊗HB
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Composite systems

Example:
• Consider the states

|ψ〉A = cosα |0〉+ sinα |1〉 =

(
cosα
sinα

)
|ψ〉B = cos β |0〉+ sin β |1〉 =

(
cos β
sin β

)

• The state of the total system is

|ψ〉AB = |ψ〉A ⊗ |ψ〉B =

(
cosα
sinα

)
⊗

(
cos β
sin β

)
=


cosα cos β
cosα sin β
sinα cos β
sinα sin β
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Composite systems

• If {|i〉} and {|k 〉} are orthonormal bases of HA and HB , then
{|i〉 ⊗ |k 〉} is an orthonormal basis of HAB

• Any pure state can be expanded as

|ψ〉AB =
∑
i,k

cik |i〉 ⊗ |k 〉 .

with cik ∈ C

• Any density matrix can be expanded as

ρAB =
∑
i,j,k ,l

cijkl |i〉〈j| ⊗ |k 〉〈l|

with cijkl ∈ C
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Composite systems

• Subsystem A is described by the reduced density matrix

ρA = TrB [ρAB ] =
∑
i,j,k ,l

cijkl |i〉〈j|Tr [|k 〉〈l|]

=
∑
i,j,k ,l

cijkl |i〉〈j| δkl =
∑
i,j,k

cijkk |i〉〈j|

• TrB is the partial trace over the subsystem B
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Composite systems
Example: Consider the density matrix

ρAB =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =

(
X Y
Y† Z

)

with matrices X =

( 1
2 0
0 0

)
, Y =

(
0 1

2
0 0

)
and Z =

(
0 0
0 1

2

)

The reduced density matrices are

ρA =

 Tr [X ] Tr [Y ]

Tr
[
Y†

]
Tr [Z ]

 =
1
2

(
1 0
0 1

)
ρB = X + Z =

1
2

(
1 0
0 1

)
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Composite systems

• Schmidt decomposition: For any pure state |ψ〉AB there
exists a product basis {|i〉 ⊗ |j〉} such that

|ψ〉AB =
∑

i

√
λi |i〉 ⊗ |i〉

with λi ≥ 0

• The numbers λi are called Schmidt coefficients of |ψ〉AB
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Composite systems

• Kraus operators of local measurements: KAB
i = Ki ⊗ 1

• Completeness condition:
∑

i

(
KAB

i

)†
KAB

i =
∑

i K †i Ki ⊗ 1 = 1AB
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Composite systems

Local quantum operations on Alice’s side:

ΛA (ρAB) =
∑

i

(Ki ⊗ 1) ρAB (Ki ⊗ 1)†
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Composite systems

State of Bob does not change upon local operations of Alice:

ρB = TrA

[
ρAB

]
= TrA

[
ΛA (ρAB)

]

25 / 34



Composite systems

• Pure state |ψ〉AB is called a purification of a mixed state ρA if

ρA = TrB [|ψ〉〈ψ|AB ]

• Two states |ψ〉AB and |φ〉AB are purifications of the same state
ρA if and only if

|ψ〉AB = (1 ⊗ U) |φ〉AB

for some local unitary U
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Useful properties of square matrices

• Functions of matrices: Let f be a function from C to C. For a
normal (diogonalizable) matrix A =

∑
i ai |ψi〉〈ψi | with

eigenvalues ai ∈ C and eigenstates |ψi〉 we define

f(A) :=
∑

i

f(ai) |ψi〉〈ψi |

• Polar decomposition: For any square matrix A there exist
unitary matrices U and V such that

A = U
√

A†A =
√

AA†V
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Theory of quantum entanglement

• If there are states |a〉 ∈ HA and |b〉 ∈ HB such that

|ψ〉AB = |a〉 ⊗ |b〉 ,

then |ψ〉AB is called separable (or product state)

• Otherwise the state is called entangled

• |ψ〉AB is product if and only if ρA is pure
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Theory of quantum entanglement

Exercise: Consider the state

|ψ〉AB =
1
√

7
(2 |00〉+ |01〉+ |10〉+ |11〉)

Is the state entangled or separable?

Solution: Density matrix ρAB = |ψ〉〈ψ|AB is given by

ρAB =
1
7


4 2 2 2
2 1 1 1
2 1 1 1
2 1 1 1

⇒ ρA =
1
7

(
5 3
3 2

)

Determinant of ρA is given by 1/49⇒ |ψ〉AB is entangled
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Local operations and classical communication (LOCC)

LOCC describes the most general procedure Alice and Bob can
apply, if they can perform arbitrary quantum
measurements/operations locally, and exchange classical
information
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Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:

1 Alice performs a local measurement {Ki} on her subsystem.

2 The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

3 Bob performs a local measurement {Lj(i)} on his subsystem,
which depends on Alice’s outcome i.

4 The outcome j of Bob’s measurement is communicated
classically to Alice.

5 Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.

34 / 34



Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:

1 Alice performs a local measurement {Ki} on her subsystem.

2 The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

3 Bob performs a local measurement {Lj(i)} on his subsystem,
which depends on Alice’s outcome i.

4 The outcome j of Bob’s measurement is communicated
classically to Alice.

5 Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.

34 / 34



Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:

1 Alice performs a local measurement {Ki} on her subsystem.

2 The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

3 Bob performs a local measurement {Lj(i)} on his subsystem,
which depends on Alice’s outcome i.

4 The outcome j of Bob’s measurement is communicated
classically to Alice.

5 Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.

34 / 34



Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:

1 Alice performs a local measurement {Ki} on her subsystem.

2 The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

3 Bob performs a local measurement {Lj(i)} on his subsystem,
which depends on Alice’s outcome i.

4 The outcome j of Bob’s measurement is communicated
classically to Alice.

5 Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.

34 / 34



Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:

1 Alice performs a local measurement {Ki} on her subsystem.

2 The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

3 Bob performs a local measurement {Lj(i)} on his subsystem,
which depends on Alice’s outcome i.

4 The outcome j of Bob’s measurement is communicated
classically to Alice.

5 Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.

34 / 34


	Short review of quantum theory
	Quantum states
	Quantum measurements and operations

	Composite systems
	Theory of quantum entanglement
	Definition
	Local operations and classical communication


