# Advanced quantum information: entanglement and nonlocality 

Alexander Streltsov

1st class<br>March 2, 2022

## Advanced quantum information

- Every Wednesday 15:15-17:00
- Literature:
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2012)
- Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009)
- Howework and lecture notes: http://qot.cent.uw.edu.pl/teaching/
- Homework to be submitted via email as a single pdf


## Outline

(1) Short review of quantum theory

Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement Definition
Local operations and classical communication

## Outline

(1) Short review of quantum theory

## Quantum states

Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement Definition
Local operations and classical communication

## Outline

(1) Short review of quantum theory Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement

Definition
Local operations and classical communication

## Quantum states

- Any physical system is completely described by a state vector $|\psi\rangle \in \mathcal{H}$


## Quantum states

- Any physical system is completely described by a state vector $|\psi\rangle \in \mathcal{H}$
- Qubit: quantum system with Hilbert space dimension 2


## Quantum states

- Any physical system is completely described by a state vector $|\psi\rangle \in \mathcal{H}$
- Qubit: quantum system with Hilbert space dimension 2
- A system which is described by a single state vector is in a pure state


## Quantum states

- A system which is in the pure state $\left|\psi_{i}\right\rangle$ with probability $p_{i}$ is described by a density matrix

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

where $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ denote projectors onto the vector $\left|\psi_{i}\right\rangle$

## Quantum states

- A system which is in the pure state $\left|\psi_{i}\right\rangle$ with probability $p_{i}$ is described by a density matrix

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

where $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ denote projectors onto the vector $\left|\psi_{i}\right\rangle$

- If $p_{\text {max }}<1$, the system is in a mixed state


## Quantum states

Example: Consider $p_{0}=p_{1}=1 / 2$ and

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=|0\rangle=\binom{1}{0}, \\
& \left|\psi_{1}\right\rangle=\cos \alpha|0\rangle+\sin \alpha|1\rangle=\binom{\cos \alpha}{\sin \alpha}
\end{aligned}
$$

## Quantum states

Example: Consider $p_{0}=p_{1}=1 / 2$ and

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=|0\rangle=\binom{1}{0} \\
& \left|\psi_{1}\right\rangle=\cos \alpha|0\rangle+\sin \alpha|1\rangle=\binom{\cos \alpha}{\sin \alpha}
\end{aligned}
$$

The density matrix is given by

$$
\begin{aligned}
\rho & =\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \\
& =\frac{1}{2}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\frac{1}{2}\binom{\cos \alpha}{\sin \alpha}\left(\begin{array}{cc}
\cos \alpha & \sin \alpha
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
\cos ^{2} \alpha & \cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha & \sin ^{2} \alpha
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1+\cos ^{2} \alpha & \cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha & \sin ^{2} \alpha
\end{array}\right)
\end{aligned}
$$

## Quantum states

Properties of density matrices:

## Quantum states

Properties of density matrices:

- $\rho$ has trace equal to one:

$$
\operatorname{Tr}[\rho]=1
$$

## Quantum states

Properties of density matrices:

- $\rho$ has trace equal to one:

$$
\operatorname{Tr}[\rho]=1
$$

- $\rho$ is positive semidefinite:

$$
\langle\psi| \rho|\psi\rangle \geq 0
$$

for any vector $|\psi\rangle$

## Quantum states

Properties of density matrices:

- $\rho$ has trace equal to one:

$$
\operatorname{Tr}[\rho]=1
$$

- $\rho$ is positive semidefinite:

$$
\langle\psi| \rho|\psi\rangle \geq 0
$$

for any vector $|\psi\rangle$
Second property also implies that $\rho$ is Hermitian: $\rho^{\dagger}=\rho$.

## Outline

(1) Short review of quantum theory

## Quantum states

Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement

Definition
Local operations and classical communication

## Quantum measurements and operations

- Consider a spin- $\frac{1}{2}$ particle in the state

$$
|\psi\rangle=a|\uparrow\rangle+b|\downarrow\rangle=\binom{a}{b}
$$

## Quantum measurements and operations

- Consider a spin- $\frac{1}{2}$ particle in the state

$$
|\psi\rangle=a|\uparrow\rangle+b|\downarrow\rangle=\binom{a}{b}
$$

- Measurement postulate of quantum mechanics: probability to measure "spin up" or "spin down" is given by

$$
\begin{aligned}
& p(\uparrow)=|a|^{2} \\
& p(\downarrow)=|b|^{2}=1-p(\uparrow)
\end{aligned}
$$

## Quantum measurements and operations

- Consider a spin- $\frac{1}{2}$ particle in the state

$$
|\psi\rangle=a|\uparrow\rangle+b|\downarrow\rangle=\binom{a}{b}
$$

- Measurement postulate of quantum mechanics: probability to measure "spin up" or "spin down" is given by

$$
\begin{aligned}
& p(\uparrow)=|a|^{2} \\
& p(\downarrow)=|b|^{2}=1-p(\uparrow)
\end{aligned}
$$

- The post-measurement state of the particle is either $|\uparrow\rangle$ or $|\downarrow\rangle$


## Quantum measurements and operations

- General quantum measurement: collection $\left\{K_{i}\right\}$ of Kraus operators that fulfill the completeness equation:

$$
\sum_{i} K_{i}^{\dagger} K_{i}=\mathbb{1}_{d}=\left(\begin{array}{lll}
1 & & 0  \tag{1}\\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

## Quantum measurements and operations

- General quantum measurement: collection $\left\{K_{i}\right\}$ of Kraus operators that fulfill the completeness equation:

$$
\sum_{i} K_{i}^{\dagger} K_{i}=\mathbb{1}_{d}=\left(\begin{array}{lll}
1 & & 0  \tag{1}\\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

- Probability for the measurement outcome $i$ :

$$
p_{i}=\operatorname{Tr}\left[K_{i} \rho K_{i}^{\dagger}\right]
$$

## Quantum measurements and operations

- General quantum measurement: collection $\left\{K_{i}\right\}$ of Kraus operators that fulfill the completeness equation:

$$
\sum_{i} K_{i}^{\dagger} K_{i}=\mathbb{1}_{d}=\left(\begin{array}{lll}
1 & & 0  \tag{1}\\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

- Probability for the measurement outcome $i$ :

$$
p_{i}=\operatorname{Tr}\left[K_{i} \rho K_{i}^{\dagger}\right]
$$

- Post-measurement state of the system after occurrence of outcome $i$ :

$$
\rho_{i}=\frac{K_{i} \rho K_{i}^{\dagger}}{p_{i}}
$$

## Quantum measurements and operations



- Any set of Kraus operators corresponds to a measurement, in principle realizable in laboratory


## Quantum measurements and operations



- Any set of Kraus operators corresponds to a measurement, in principle realizable in laboratory
- For any physically realizable measurement there exists a valid set of Kraus operators


## Quantum measurements and operations

- Positive operator-valued measure (POVM): set of operators

$$
M_{i}=K_{i}^{\dagger} K_{i}
$$

## Quantum measurements and operations

- Positive operator-valued measure (POVM): set of operators

$$
M_{i}=K_{i}^{\dagger} K_{i}
$$

- The completeness condition $\sum_{i} K_{i}^{\dagger} K_{i}=\mathbb{1}_{d}$ implies

$$
\sum_{i} M_{i}=\mathbb{1}_{d}
$$

## Quantum measurements and operations

- Positive operator-valued measure (POVM): set of operators

$$
M_{i}=K_{i}^{\dagger} K_{i}
$$

- The completeness condition $\sum_{i} K_{i}^{\dagger} K_{i}=\mathbb{1}_{d}$ implies

$$
\sum_{i} M_{i}=\mathbb{1}_{d}
$$

- Probabilities of the outcomes:

$$
p_{i}=\operatorname{Tr}\left[M_{i} \rho\right]
$$

## Quantum measurements and operations

- Projective measurement: operators $K_{i}$ are orthogonal projectors

$$
K_{i} K_{j}=\delta_{i j} K_{i}
$$

## Quantum measurements and operations

- Projective measurement: operators $K_{i}$ are orthogonal projectors

$$
K_{i} K_{j}=\delta_{i j} K_{i}
$$

- Von Neumann measurement: $K_{i}$ are orthogonal projectors with rank one


## Quantum measurements and operations

- Any set of Kraus operators $\left\{K_{i}\right\}$ also defines a quantum operation:

$$
\Lambda(\rho)=\sum_{i} K_{i} \rho K_{i}^{\dagger}
$$

## Quantum measurements and operations

- Any set of Kraus operators $\left\{K_{i}\right\}$ also defines a quantum operation:

$$
\Lambda(\rho)=\sum_{i} K_{i} \rho K_{i}^{\dagger}
$$

- Quantum operations describe the most general change of a quantum state in a physical process


## Quantum measurements and operations

- Any set of Kraus operators $\left\{K_{i}\right\}$ also defines a quantum operation:

$$
\Lambda(\rho)=\sum_{i} K_{i} \rho K_{i}^{\dagger}
$$

- Quantum operations describe the most general change of a quantum state in a physical process
- They correspond to a special class of linear maps, which are completely positive and trace preserving (CPTP)


## Outline

(1) Short review of quantum theory Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement

## Definition

Local operations and classical communication

## Composite systems

- Consider two parties, Alice and Bob, with Hilbert spaces $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$


## Composite systems

- Consider two parties, Alice and Bob, with Hilbert spaces $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$
- Total Hilbert space is a tensor product of the subsystem spaces:

$$
\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

## Composite systems

## Example:

- Consider the states

$$
\begin{aligned}
& |\psi\rangle^{A}=\cos \alpha|0\rangle+\sin \alpha|1\rangle=\binom{\cos \alpha}{\sin \alpha} \\
& |\psi\rangle^{B}=\cos \beta|0\rangle+\sin \beta|1\rangle=\binom{\cos \beta}{\sin \beta}
\end{aligned}
$$

## Composite systems

## Example:

- Consider the states

$$
\begin{aligned}
& |\psi\rangle^{A}=\cos \alpha|0\rangle+\sin \alpha|1\rangle=\binom{\cos \alpha}{\sin \alpha} \\
& |\psi\rangle^{B}=\cos \beta|0\rangle+\sin \beta|1\rangle=\binom{\cos \beta}{\sin \beta}
\end{aligned}
$$

- The state of the total system is

$$
|\psi\rangle^{A B}=|\psi\rangle^{A} \otimes|\psi\rangle^{B}=\binom{\cos \alpha}{\sin \alpha} \otimes\binom{\cos \beta}{\sin \beta}=\left(\begin{array}{c}
\cos \alpha \cos \beta \\
\cos \alpha \sin \beta \\
\sin \alpha \cos \beta \\
\sin \alpha \sin \beta
\end{array}\right)
$$

## Composite systems

- If $\{|i\rangle\}$ and $\{|k\rangle\}$ are orthonormal bases of $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$, then $\{|i\rangle \otimes|k\rangle\}$ is an orthonormal basis of $\mathcal{H}_{A B}$


## Composite systems

- If $\{|i\rangle\}$ and $\{|k\rangle\}$ are orthonormal bases of $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$, then $\{|i\rangle \otimes|k\rangle\}$ is an orthonormal basis of $\mathcal{H}_{A B}$
- Any pure state can be expanded as

$$
|\psi\rangle^{A B}=\sum_{i, k} c_{i k}|i\rangle \otimes|k\rangle
$$

with $c_{i k} \in \mathbb{C}$

## Composite systems

- If $\{|i\rangle\}$ and $\{|k\rangle\}$ are orthonormal bases of $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$, then $\{|i\rangle \otimes|k\rangle\}$ is an orthonormal basis of $\mathcal{H}_{A B}$
- Any pure state can be expanded as

$$
|\psi\rangle^{A B}=\sum_{i, k} c_{i k}|i\rangle \otimes|k\rangle
$$

with $c_{i k} \in \mathbb{C}$

- Any density matrix can be expanded as

$$
\rho^{A B}=\sum_{i, j, k, l} c_{i j k l}|i\rangle\langle j| \otimes|k\rangle\langle I|
$$

with $c_{i j k l} \in \mathbb{C}$

## Composite systems

- Subsystem $A$ is described by the reduced density matrix

$$
\begin{aligned}
\rho^{A} & =\operatorname{Tr}_{B}\left[\rho^{A B}\right]=\sum_{i, j, k, l} c_{i j k l}|i\rangle\langle j| \operatorname{Tr}[|k\rangle\langle\|] \\
& =\sum_{i, j, k, l} c_{i j k l}|i\rangle\langle j| \delta_{k l}=\sum_{i, j, k} c_{i j k k}|i\rangle\langle j|
\end{aligned}
$$

## Composite systems

- Subsystem $A$ is described by the reduced density matrix

$$
\begin{aligned}
\rho^{A} & =\operatorname{Tr}_{B}\left[\rho^{A B}\right]=\sum_{i, j, k, l} c_{i j k l}|i\rangle\langle j| \operatorname{Tr}[|k\rangle\langle\|] \\
& =\sum_{i, j, k, l} c_{i j k l}|i\rangle\langle j| \delta_{k l}=\sum_{i, j, k} c_{i j k k}|i\rangle\langle j|
\end{aligned}
$$

- $\operatorname{Tr}_{B}$ is the partial trace over the subsystem $B$


## Composite systems

Example: Consider the density matrix

$$
\rho^{A B}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
Y^{\dagger} & Z
\end{array}\right)
$$

with matrices $X=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right), Y=\left(\begin{array}{cc}0 & \frac{1}{2} \\ 0 & 0\end{array}\right)$ and $Z=\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$

## Composite systems

Example: Consider the density matrix

$$
\rho^{A B}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
Y^{\dagger} & Z
\end{array}\right)
$$

with matrices $X=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0\end{array}\right), Y=\left(\begin{array}{cc}0 & \frac{1}{2} \\ 0 & 0\end{array}\right)$ and $Z=\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
The reduced density matrices are

$$
\begin{aligned}
& \rho^{A}=\left(\begin{array}{cc}
\operatorname{Tr}[X] & \operatorname{Tr}[Y] \\
\operatorname{Tr}\left[Y^{\dagger}\right] & \operatorname{Tr}[Z]
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \rho^{B}=X+Z=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

## Composite systems

- Schmidt decomposition: For any pure state $|\psi\rangle^{A B}$ there exists a product basis $\{|i\rangle \otimes|j\rangle\}$ such that

$$
|\psi\rangle^{A B}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

with $\lambda_{i} \geq 0$

## Composite systems

- Schmidt decomposition: For any pure state $|\psi\rangle^{A B}$ there exists a product basis $\{|i\rangle \otimes|j\rangle\}$ such that

$$
|\psi\rangle^{A B}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

with $\lambda_{i} \geq 0$

- The numbers $\lambda_{i}$ are called Schmidt coefficients of $|\psi\rangle^{A B}$

Composite systems


- Kraus operators of local measurements: $K_{i}^{A B}=K_{i} \otimes \mathbb{1}$

Composite systems


- Kraus operators of local measurements: $K_{i}^{A B}=K_{i} \otimes \mathbb{1}$
- Completeness condition: $\sum_{i}\left(K_{i}^{A B}\right)^{\dagger} K_{i}^{A B}=\sum_{i} K_{i}^{\dagger} K_{i} \otimes \mathbb{1}=\mathbb{1}_{A B}$


## Composite systems



Local quantum operations on Alice's side:

$$
\Lambda^{A}\left(\rho^{A B}\right)=\sum_{i}\left(K_{i} \otimes \mathbb{1}\right) \rho^{A B}\left(K_{i} \otimes \mathbb{1}\right)^{\dagger}
$$

## Composite systems



State of Bob does not change upon local operations of Alice:

$$
\rho^{B}=\operatorname{Tr}_{A}\left[\rho^{A B}\right]=\operatorname{Tr}_{A}\left[\Lambda^{A}\left(\rho^{A B}\right)\right]
$$

## Composite systems

- Pure state $|\psi\rangle^{A B}$ is called a purification of a mixed state $\rho^{A}$ if

$$
\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.
$$

## Composite systems

- Pure state $|\psi\rangle^{A B}$ is called a purification of a mixed state $\rho^{A}$ if

$$
\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.
$$

- Two states $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ are purifications of the same state $\rho^{A}$ if and only if

$$
|\psi\rangle^{A B}=(\mathbb{1} \otimes U)|\phi\rangle^{A B}
$$

for some local unitary $U$

## Useful properties of square matrices

- Functions of matrices: Let $f$ be a function from $\mathbb{C}$ to $\mathbb{C}$. For a normal (diogonalizable) matrix $A=\sum_{i} a_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ with eigenvalues $a_{i} \in \mathbb{C}$ and eigenstates $\left|\psi_{i}\right\rangle$ we define

$$
f(A):=\sum_{i} f\left(a_{i}\right)\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

## Useful properties of square matrices

- Functions of matrices: Let $f$ be a function from $\mathbb{C}$ to $\mathbb{C}$. For a normal (diogonalizable) matrix $A=\sum_{i} a_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ with eigenvalues $a_{i} \in \mathbb{C}$ and eigenstates $\left|\psi_{i}\right\rangle$ we define

$$
f(A):=\sum_{i} f\left(a_{i}\right)\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- Polar decomposition: For any square matrix $A$ there exist unitary matrices $U$ and $V$ such that

$$
A=U \sqrt{A^{\dagger} A}=\sqrt{A A^{\dagger} V}
$$

## Outline

(1) Short review of quantum theory
Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement Definition
Local operations and classical communication

## Outline

(1) Short review of quantum theory

Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement Definition
Local operations and classical communication

## Theory of quantum entanglement

- If there are states $|a\rangle \in \mathcal{H}_{A}$ and $|b\rangle \in \mathcal{H}_{B}$ such that

$$
|\psi\rangle^{A B}=|a\rangle \otimes|b\rangle,
$$

then $|\psi\rangle^{A B}$ is called separable (or product state)

## Theory of quantum entanglement

- If there are states $|a\rangle \in \mathcal{H}_{A}$ and $|b\rangle \in \mathcal{H}_{B}$ such that

$$
|\psi\rangle^{A B}=|a\rangle \otimes|b\rangle,
$$

then $|\psi\rangle^{A B}$ is called separable (or product state)

- Otherwise the state is called entangled


## Theory of quantum entanglement

- If there are states $|a\rangle \in \mathcal{H}_{A}$ and $|b\rangle \in \mathcal{H}_{B}$ such that

$$
|\psi\rangle^{A B}=|a\rangle \otimes|b\rangle,
$$

then $|\psi\rangle^{A B}$ is called separable (or product state)

- Otherwise the state is called entangled
- $|\psi\rangle^{A B}$ is product if and only if $\rho^{A}$ is pure


## Theory of quantum entanglement

Exercise: Consider the state

$$
|\psi\rangle^{A B}=\frac{1}{\sqrt{7}}(2|00\rangle+|01\rangle+|10\rangle+|11\rangle)
$$

Is the state entangled or separable?

## Theory of quantum entanglement

Exercise: Consider the state

$$
|\psi\rangle^{A B}=\frac{1}{\sqrt{7}}(2|00\rangle+|01\rangle+|10\rangle+|11\rangle)
$$

Is the state entangled or separable?
Solution: Density matrix $\rho^{A B}=|\psi\rangle\left\langle\left.\psi\right|^{A B}\right.$ is given by

$$
\rho^{A B}=\frac{1}{7}\left(\begin{array}{llll}
4 & 2 & 2 & 2 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{array}\right) \Rightarrow \rho^{A}=\frac{1}{7}\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)
$$

Determinant of $\rho^{A}$ is given by $1 / 49 \Rightarrow|\psi\rangle^{A B}$ is entangled

## Outline

(1) Short review of quantum theory

Quantum states
Quantum measurements and operations
(2) Composite systems
(3) Theory of quantum entanglement

Definition
Local operations and classical communication

## Local operations and classical communication (LOCC)



LOCC describes the most general procedure Alice and Bob can apply, if they can perform arbitrary quantum measurements/operations locally, and exchange classical information

## Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.

## Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome $i$ of Alice's measurement is communicated to Bob via a classical channel.

## Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome $i$ of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome i.

## Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome $i$ of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome $i$.
(4) The outcome $j$ of Bob's measurement is communicated classically to Alice.

## Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome $i$ of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome $i$.
(4) The outcome $j$ of Bob's measurement is communicated classically to Alice.

5 Alice performs a local measurement on her subsystem which can depend on all outcomes of all previous measurements, and the process starts over at step 2.

