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Advanced quantum information

Every Wednesday 15:15 - 17:00

¢ Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

Homework to be submitted via email as a single pdf
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Outline

@ Short review of quantum theory
Quantum states
Quantum measurements and operations

@ Composite systems

® Theory of quantum entanglement
Definition
Local operations and classical communication
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Quantum states

® Any physical system is completely described by a state
vector |y) € H
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Quantum states

® Any physical system is completely described by a state
vector |y) € H

® Qubit: quantum system with Hilbert space dimension 2

* A system which is described by a single state vector is in a
pure state
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Quantum states

® A system which is in the pure state |i;) with probability p; is
described by a density matrix

p= Z pi Wil

where |y;){¥i| denote projectors onto the vector i)
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Quantum states

® A system which is in the pure state |i;) with probability p; is
described by a density matrix

p= Z pi Wil

where |y;){¥i| denote projectors onto the vector i)

® If pmax < 1, the system is in a mixed state
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Quantum states
Example: Consider pp = py = 1/2 and

wo =10 = g .

1) = cosa|0) + sina|1) :( cosa )

sin
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Quantum states
Example: Consider pp = py = 1/2 and

wo =10 = g .

1) = cosa|0) + sina|1) :( cosa )

sin

The density matrix is given by

I0><0I + 5 Il//1 Xyl

1(1 1( cosa )
_5(0)(1 O)+§( cina )(cosa/ sma)
_ 1 10 1_ cos? a cos @ sin
o 00 cosasina sin®
1 ( 1+ cos?a cosasina )
= s

cosa sin a sin“
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Quantum states

Properties of density matrices:
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Trlp] = 1
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Quantum states

Properties of density matrices:
® p has trace equal to one:

Trlp] = 1
® pis positive semidefinite:

Wloly) =0

for any vector |¢)

Second property also implies that p is Hermitian: pf = p.
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Quantum measurements and operations

® Consider a spin-% particle in the state

|¢>=a|¢>+b|¢>=(2)
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Quantum measurements and operations

® Consider a spin-% particle in the state
a
|¢>=a|¢>+b|¢>=( b )

¢ Measurement postulate of quantum mechanics:
probability to measure “spin up” or “spin down” is given by

p(1) = lal?
p(l) =Ib? =1-p(1)
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Quantum measurements and operations

® Consider a spin-% particle in the state
a
|¢>=a|¢>+b|¢>=( b )

¢ Measurement postulate of quantum mechanics:
probability to measure “spin up” or “spin down” is given by

p(1) = lal?
p(l) =Ib? =1-p(1)

® The post-measurement state of the particle is either |T) or ||)
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Quantum measurements and operations

¢ General quantum measurement: collection {K;} of Kraus
operators that fulfill the completeness equation:

1 0

D KKi=1g={ . (1)
i 0 1
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Quantum measurements and operations

¢ General quantum measurement: collection {K;} of Kraus
operators that fulfill the completeness equation:
1 0

D KKi=1g={ . (1)
i 0 1

® Probability for the measurement outcome i:
pi = Tr[KipK]]

* Post-measurement state of the system after occurrence of

outcome i:
Kipk!

pi

pi=
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Quantum measurements and operations
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* Any set of Kraus operators corresponds to a measurement, in
principle realizable in laboratory
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Quantum measurements and operations

§ >

* Any set of Kraus operators corresponds to a measurement, in
principle realizable in laboratory

¢ For any physically realizable measurement there exists a valid
set of Kraus operators
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Quantum measurements and operations

¢ Positive operator-valued measure (POVM): set of operators

Mi = K K;
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¢ Positive operator-valued measure (POVM): set of operators

Mi = K K;

® The completeness condition }; K,.TK; = 1q4 implies

ZM,':]ld
i
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Quantum measurements and operations

¢ Positive operator-valued measure (POVM): set of operators

Mi = K K;
® The completeness condition }; K,.TK; = 1q4 implies

zg] M; =14
i

* Probabilities of the outcomes:

pi = Tr[Mip]
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Quantum measurements and operations

* Projective measurement: operators K; are orthogonal
projectors
KiKj = 6jK;
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Quantum measurements and operations

* Projective measurement: operators K; are orthogonal
projectors
KiKj = 6jK;

¢ Von Neumann measurement: K; are orthogonal projectors
with rank one
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Quantum measurements and operations

* Any set of Kraus operators {K;} also defines a quantum

operation:
Ap) = > KipK]
i
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Quantum measurements and operations

* Any set of Kraus operators {K;} also defines a quantum

operation:
Ap) = > KipK]
i

* Quantum operations describe the most general change of a
quantum state in a physical process

® They correspond to a special class of linear maps, which are
completely positive and trace preserving (CPTP)
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Outline

@ Composite systems
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Composite systems

® Consider two parties, Alice and Bob, with Hilbert spaces Ha
and 7'{5
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Composite systems

® Consider two parties, Alice and Bob, with Hilbert spaces Ha
and 7'{5

¢ Total Hilbert space is a tensor product of the subsystem

spaces:
Hpg = Ha @ Hp

18/34



Composite systems

Example:
® Consider the states

YA = cosa|0) + sina 1) :( ‘;’j;’ )
B . _ [ cosp
) —C05,3|0>+sm,3|1>—( sin,B)
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Composite systems

Example:
® Consider the states

WY = cosa|0) + sina|1) :( ‘:j;’ )
) = cosB10) +sin BI1) = ( ‘;?:g )
® The state of the total system is
cosa cosfB
07 < o = S20 Yo S8 )| roens

sinasinf
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Composite systems

e [f{|i}} and {|k)} are orthonormal bases of H and Hpg, then
{li ® |k)} is an orthonormal basis of Hag
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Composite systems

e [f{|i}} and {|k)} are orthonormal bases of H and Hpg, then
{li ® |k)} is an orthonormal basis of Hag

¢ Any pure state can be expanded as

W8 = > cily @1k
i,k

with ci € C
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Composite systems

e [f{|i}} and {|k)} are orthonormal bases of H and Hpg, then
{IiY ® |k)} is an orthonormal basis of Hpg

¢ Any pure state can be expanded as

W8 = > cily @1k
i,k

with ci € C

¢ Any density matrix can be expanded as

P8 = > cialiviii @ k|

ij.k,1

with Cijkl € C
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Composite systems

® Subsystem A is described by the reduced density matrix

p* = Trg[p®] = > cjalidi Tr [l

ij.k,I

= Z Ciit 11){J1 01 = Z Cikk 1]

ikl ijk
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Composite systems

® Subsystem A is described by the reduced density matrix

p* = Trg[p®] = > cjalidi Tr [l

ik
= Z Ciit 11){J1 01 = Z Cikk 1]

Lik.l ijk

® Trg is the partial trace over the subsystem B
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Composite systems

Example: Consider the density matrix

1 0 0 1
a_1l00O0O0| (XY
P =%loo0oo0o0| \Y z
1 0 0 1
with matrices X = %0 Y = 0%andZ— 00
“loo)  "\loo o}
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Composite systems

Example: Consider the density matrix

1 0 0 1
a_1l00O0O0| (XY
P =%loo0oo0o0| \Y z
1 0 0 1
with matrices X = %0 Y = 0%andZ— 00
“\{o o) 00 o}

The reduced density matrices are

(i i) ale 0

T2

11 0
B _ _ —
p_X+Z_2(0 1)
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Composite systems

 Schmidt decomposition: For any pure state |)*Z there
exists a product basis {|i) ® |j)} such that

W = Vil el

with 4; > 0
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Composite systems

 Schmidt decomposition: For any pure state |)*Z there
exists a product basis {|i) ® |j)} such that

W = Vil el
with 4; > 0

* The numbers A; are called Schmidt coefficients of |y)8
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Composite systems

e Kraus operators of local measurements: K,.AB =Kol
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Composite systems

Y

A

e Kraus operators of local measurements: K,.AB =Kol

¢ Completeness condition: Z,-(KI.AB)T KA =3 K'Ki® 1 = 1ag
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Composite systems

A4 s 4
///t/f4i~(}L 200

] o

Local quantum operations on Alice’s side:

M) = ) (ke 1) (Ko L)'

i
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Composite systems

/N /ﬁ /{3 /;7
Adica bob

— Kb

State of Bob does not change upon local operations of Alice:

0B = Tra [pAB] — Tra [AA (pAB)]
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Composite systems

>AB

* Pure state |y)*? is called a purification of a mixed state p* if

o = Tre[lw) W]
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Composite systems

>AB

* Pure state |y)*? is called a purification of a mixed state p* if

o = Trg[lw ) w8

e Two states |8 and |¢)" are purifications of the same state
p” if and only if
W = (1o U)Ip*®

for some local unitary U
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Useful properties of square matrices

* Functions of matrices: Let f be a function from C to C. For a
normal (diogonalizable) matrix A = 3; a; ;)¢ with
eigenvalues ag; € C and eigenstates |¢;) we define

f(A) = > f(a) i

1
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Useful properties of square matrices

* Functions of matrices: Let f be a function from C to C. For a
normal (diogonalizable) matrix A = 3; a; ;)¢ with
eigenvalues ag; € C and eigenstates |¢;) we define

f(A) = > f(a) i

1

® Polar decomposition: For any square matrix A there exist
unitary matrices U and V such that

A =UVATA = VAATV
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Outline

® Theory of quantum entanglement
Definition
Local operations and classical communication
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Theory of quantum entanglement

¢ |f there are states |a) € H and |b) € Hp such that
)8 =la)® by,

then |)*B is called separable (or product state)
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Theory of quantum entanglement

¢ |f there are states |a) € H and |b) € Hp such that
)8 =la)® by,

then |)*B is called separable (or product state)
® Otherwise the state is called entangled

e 4B is product if and only if p# is pure
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Theory of quantum entanglement

Exercise: Consider the state
1
V7

Is the state entangled or separable?

[y*B = — (2100) +101) + [10) + [11))
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Theory of quantum entanglement

Exercise: Consider the state
1
V7

Is the state entangled or separable?

[y*B = — (2100) +101) + [10) + [11))

Solution: Density matrix p”B = [y)w|*8 is given by

422 2
1211 1 1(5 3
ag _ 1 A_l
Pr=712 11 1 |7F 7(32)
2 1 1 1

Determinant of p# is given by 1/49 = |y)*8 is entangled
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@® Theory of quantum entanglement

Local operations and classical communication
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Local operations and classical communication (LOCC)

N ngieat

LOCC describes the most general procedure Alice and Bob can
apply, if they can perform arbitrary quantum
measurements/operations locally, and exchange classical
information
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Local operations and classical communication (LOCC)
Any LOCC protocol can be decomposed into the following steps:

@ Alice performs a local measurement {Kj} on her subsystem.
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Local operations and classical communication (LOCC)
Any LOCC protocol can be decomposed into the following steps:

@ Alice performs a local measurement {Kj} on her subsystem.

® The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

© Bob performs a local measurement {L;(i)} on his subsystem,
which depends on Alice’s outcome i.

@ The outcome j of Bob’s measurement is communicated
classically to Alice.

@ Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.
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