Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

6th class
April 6, 2022

Advanced quantum information (6th class)

- Every Wednesday 15:15-17:00
- Literature:
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2012)
- Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009)
- Howework and lecture notes (will be updated today): http://qot.cent.uw.edu.pl/teaching/
- 3. Homework sheet to be submitted via email by 19. April

Outline

(1) Homework problems
(2) Entanglement measures

Trace distance and fidelity
Distance-based entanglement measures

Outline

(1) Homework problems
(2) Entanglement measures

Trace distance and fidelity
Distance-based entanglement measures

Sheet 2, Problem 2 a)

Problem 2 a) Assume that Alice and Bob share a quantum state $|\psi\rangle^{A B}$ which has the Schmidt decomposition

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

where s is the number of non-zero Schmidt components, also called the Schmidt number. Let now Alice and Bob apply an LOCC protocol transforming $|\psi\rangle^{A B}$ into another pure state $|\phi\rangle^{\lambda B}$. Prove that the Schmidt number cannot increase in this process.

Sheet 2, Problem 2 a)

Solution: Consider

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle, \quad|\phi\rangle^{A B}=\sum_{i=0}^{s^{\prime}-1} \sqrt{\mu_{i}}|i\rangle \otimes|i\rangle
$$

Sheet 2, Problem 2 a)

Solution: Consider

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle, \quad|\phi\rangle^{A B}=\sum_{i=0}^{s^{\prime}-1} \sqrt{\mu_{i}}|i\rangle \otimes|i\rangle
$$

- Assume (by contradiction) that there exists an LOCC protocol converting $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ with $s^{\prime}>s$

Sheet 2, Problem 2 a)

Solution: Consider

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle, \quad|\phi\rangle^{A B}=\sum_{i=0}^{s^{\prime}-1} \sqrt{\mu_{i}}|i\rangle \otimes|i\rangle
$$

- Assume (by contradiction) that there exists an LOCC protocol converting $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ with $s^{\prime}>s$
- Define vectors (sorted in decreasing order)

$$
\begin{aligned}
& \vec{\lambda}=(\underbrace{\lambda_{0}, \ldots, \lambda_{s-1}, 0, \ldots 0}_{s^{\prime}}), \\
& \vec{\mu}=\left(\mu_{0}, \ldots, \mu_{s-1}, \ldots, \mu_{s^{\prime}-1}\right)
\end{aligned}
$$

Sheet 2, Problem 2 a)

Solution: Consider

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle, \quad|\phi\rangle^{A B}=\sum_{i=0}^{s^{\prime}-1} \sqrt{\mu_{i}}|i\rangle \otimes|i\rangle
$$

- Assume (by contradiction) that there exists an LOCC protocol converting $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ with $s^{\prime}>s$
- Define vectors (sorted in decreasing order)

$$
\begin{aligned}
& \vec{\lambda}=(\underbrace{\lambda_{0}, \ldots, \lambda_{s-1}, 0, \ldots 0}_{s^{\prime}}), \\
& \vec{\mu}=\left(\mu_{0}, \ldots, \mu_{s-1}, \ldots, \mu_{s^{\prime}-1}\right)
\end{aligned}
$$

- Theorem 2.1. \Rightarrow it must be that $\vec{\lambda}<\vec{\mu}$

Sheet 2, Problem 2 a)

Solution: Consider

$$
|\psi\rangle^{A B}=\sum_{i=0}^{s-1} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle, \quad|\phi\rangle^{A B}=\sum_{i=0}^{s^{\prime}-1} \sqrt{\mu_{i}}|i\rangle \otimes|i\rangle
$$

- Assume (by contradiction) that there exists an LOCC protocol converting $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ with $s^{\prime}>s$
- Define vectors (sorted in decreasing order)

$$
\begin{aligned}
& \vec{\lambda}=(\underbrace{\lambda_{0}, \ldots, \lambda_{s-1}, 0, \ldots 0}_{s^{\prime}}), \\
& \vec{\mu}=\left(\mu_{0}, \ldots, \mu_{s-1}, \ldots, \mu_{s^{\prime}-1}\right)
\end{aligned}
$$

- Theorem 2.1. \Rightarrow it must be that $\vec{\lambda}<\vec{\mu}$
- Contradiction:

$$
\sum_{i=0}^{s-1} \lambda_{i}=1>\sum_{i=0}^{s-1} \mu_{i}
$$

Sheet 2, Problem 2 e)

Problem 2 e)

Assume that Alice and Bob share a state $|\psi\rangle^{A B}$. Show that whenever $|\psi\rangle^{A B}$ is entangled Alice and Bob can obtain a Bell state $\left|\Phi^{+}\right\rangle$with nonzero probability by using LOCC. This proves that all pure entangled states are single-copy distillable.

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$
Alice applies local measurement with Kraus operators

$$
K_{0}=\sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right|, \quad K_{1}=\sqrt{\frac{2 \lambda_{0}-1}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|
$$

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$
Alice applies local measurement with Kraus operators

$$
K_{0}=\sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right|, \quad K_{1}=\sqrt{\frac{2 \lambda_{0}-1}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|
$$

Note that

$$
K_{0}^{\dagger} K_{0}+K_{1}^{\dagger} K_{1}=\frac{1-\lambda_{0}}{\lambda_{0}}\left|\alpha_{0}\right\rangle\left\langle\alpha_{0}\right|+\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right|+\frac{2 \lambda_{0}-1}{\lambda_{0}}\left|\alpha_{0}\right\rangle\left\langle\alpha_{0}\right|=\mathbb{1}
$$

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$
Alice applies local measurement with Kraus operators

$$
K_{0}=\sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right|, \quad K_{1}=\sqrt{\frac{2 \lambda_{0}-1}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|
$$

- We have $K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{1-\lambda_{0}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)$

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$
Alice applies local measurement with Kraus operators

$$
K_{0}=\sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right|, \quad K_{1}=\sqrt{\frac{2 \lambda_{0}-1}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|
$$

- We have $K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{1-\lambda_{0}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)$
- Probability of outcome 0: $p_{0}=\langle\psi| K_{0}^{\dagger} K_{0} \otimes \mathbb{1}|\psi\rangle=2\left(1-\lambda_{0}\right)>0$

Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

$$
|\psi\rangle^{A B}=\sqrt{\lambda_{0}}\left|\alpha_{0}\right\rangle\left|\beta_{0}\right\rangle+\sqrt{1-\lambda_{0}}\left|\alpha_{1}\right\rangle\left|\beta_{1}\right\rangle
$$

Without loss of generality $\frac{1}{2} \leq \lambda_{0}<1$
Alice applies local measurement with Kraus operators

$$
K_{0}=\sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right|, \quad K_{1}=\sqrt{\frac{2 \lambda_{0}-1}{\lambda_{0}}}|0\rangle\left\langle\alpha_{0}\right|
$$

- We have $K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{1-\lambda_{0}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)$
- Probability of outcome 0: $p_{0}=\langle\psi| K_{0}^{\dagger} K_{0} \otimes \mathbb{1}|\psi\rangle=2\left(1-\lambda_{0}\right)>0$
- Post-measurement state:

$$
\frac{1}{\sqrt{p_{0}}} K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)
$$

Sheet 2, Problem 2 e)

Probability of outcome 0 and post-measurement state:

$$
\begin{aligned}
& p_{0}=\langle\psi| K_{0}^{\dagger} K_{0} \otimes \mathbb{1}|\psi\rangle=2\left(1-\lambda_{0}\right)>0, \\
& \frac{1}{\sqrt{p_{0}}} K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)
\end{aligned}
$$

Sheet 2, Problem 2 e)

Probability of outcome 0 and post-measurement state:

$$
\begin{aligned}
& p_{0}=\langle\psi| K_{0}^{\dagger} K_{0} \otimes \mathbb{1}|\psi\rangle=2\left(1-\lambda_{0}\right)>0 \\
& \frac{1}{\sqrt{p_{0}}} K_{0} \otimes \mathbb{1}|\psi\rangle^{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle\left|\beta_{0}\right\rangle+|1\rangle\left|\beta_{1}\right\rangle\right)
\end{aligned}
$$

Bob applies local unitary $U=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|$
\Rightarrow Alice and Bob end with $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Sheet 2, Problem 2 f)

Problem 2 f) For $d_{A}=d_{B}=3$ consider the following state for $0 \leq a \leq 1$:

$$
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right) .
$$

Prove that ρ_{a} has positive partial transpose for $0 \leq a \leq 1$. Show numerically that the realigned matrix $\widetilde{\rho_{a}}$ fulfills $\left\|\widetilde{\rho_{a}}\right\|_{1}>1$ for all $0<a<1$. This proves that the state ρ_{a} is bound entangled in the range $0<a<1$.

Sheet 2, Problem 2 f)

$$
\begin{aligned}
& \rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right) \\
& \rho_{a}^{T_{B}}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a & 0 & a & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & a & 0 & 0 \\
0 & a & 0 & a & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a & 0 & a & 0 \\
0 & 0 & a & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & a & 0 & a & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
\end{aligned}
$$

Sheet 2, Problem 2 f)

Eigenvalues of $\rho_{a}^{T_{B}}$:

$$
\begin{aligned}
& \frac{1+2 a-\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{1+2 a+\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{a}{1+8 a}, \frac{a}{1+8 a}, \frac{2 a}{1+8 a}, \frac{2 a}{1+8 a}, 0,0,0
\end{aligned}
$$

Sheet 2, Problem 2 f)

Eigenvalues of $\rho_{a}^{T_{B}}$:

$$
\begin{aligned}
& \frac{1+2 a-\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{1+2 a+\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{a}{1+8 a}, \frac{a}{1+8 a}, \frac{2 a}{1+8 a}, \frac{2 a}{1+8 a}, 0,0,0
\end{aligned}
$$

Potentially negative eigenvalue: $\frac{1+2 a-\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)}$

Sheet 2, Problem 2 f)

Eigenvalues of $\rho_{a}^{T_{B}}$:

$$
\begin{aligned}
& \frac{1+2 a-\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{1+2 a+\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)} \\
& \frac{a}{1+8 a}, \frac{a}{1+8 a}, \frac{2 a}{1+8 a}, \frac{2 a}{1+8 a}, 0,0,0
\end{aligned}
$$

Potentially negative eigenvalue: $\frac{1+2 a-\sqrt{1-2 a+2 a^{2}}}{2(1+8 a)}$
Note that

$$
(1+2 a)^{2}-\left[1-2 a+2 a^{2}\right]=2 a(3+a) \geq 0
$$

$\Rightarrow \rho_{a}^{T_{B}}$ has no negative eigenvalues

Sheet 2, Problem 2 f)

$$
\begin{gathered}
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right) \\
\tilde{\rho_{a}}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
\frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
\end{gathered}
$$

Sheet 2, Problem 2 f)

Sheet 2, Problem 2 f)

In summary for $0<a<1$ we proved that:

- $\rho_{a}^{T_{B}}$ is nonnegative ($\Rightarrow \rho_{a}$ is not distillable)

Sheet 2, Problem 2 f)

In summary for $0<a<1$ we proved that:

- $\rho_{a}^{T_{B}}$ is nonnegative ($\Rightarrow \rho_{a}$ is not distillable)
- $\left\|\widetilde{\rho_{a}}\right\|_{1}>1\left(\Rightarrow \rho_{a}\right.$ is entangled $)$

Sheet 2, Problem 2 f)

In summary for $0<a<1$ we proved that:

- $\rho_{a}^{T_{B}}$ is nonnegative ($\Rightarrow \rho_{a}$ is not distillable)
- $\left\|\widetilde{\rho_{a}}\right\|_{1}>1\left(\Rightarrow \rho_{a}\right.$ is entangled $)$
- $\Rightarrow \rho_{\mathrm{a}}$ is bound entangled

Outline

(1) Homework problems

(2) Entanglement measures

Trace distance and fidelity
Distance-based entanglement measures

Entanglement quantification

How much entanglement is in a given quantum state ρ ?

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,
(2) E does not increase under local operations and classical communication:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,
(2) E does not increase under local operations and classical communication:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$

Many entanglement measures have additional features:

- Convexity $E\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E\left(\rho_{i}^{A B}\right)$
- Strong monotonicity: $\sum_{i} q_{i} E\left(\sigma_{i}^{A B}\right) \leq E\left(\rho^{A B}\right)$

Entanglement of formation

- For pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

Entanglement of formation

- For pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Minimum is taken over all decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ such that $\rho^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|^{A B}\right.$

Entanglement of formation

- For pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Minimum is taken over all decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ such that $\rho^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|^{A B}\right.$

- E_{f} is convex and fulfills strong monotonicity

Entanglement of formation

- For pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Minimum is taken over all decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ such that $\rho^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|^{A B}\right.$

- E_{f} is convex and fulfills strong monotonicity
- Exact expression can be given for 2-qubit states

Outline

(1) Homework problems

(2) Entanglement measures

Trace distance and fidelity
Distance-based entanglement measures

Trace distance

- Trace distance:

$$
D_{t}(\rho, \sigma)=\frac{1}{2}\|\rho-\sigma\|_{1}
$$

with trace norm $\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}$

Trace distance

- Trace distance:

$$
D_{t}(\rho, \sigma)=\frac{1}{2}\|\rho-\sigma\|_{1}
$$

with trace norm $\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}$

- It holds that $D_{t}(\rho, \sigma)=0$ if and only if $\rho=\sigma$, and $1 \geq D(\rho, \sigma)>0$ otherwise

Trace distance

- Trace distance:

$$
D_{t}(\rho, \sigma)=\frac{1}{2}\|\rho-\sigma\|_{1}
$$

with trace norm $\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}$

- It holds that $D_{t}(\rho, \sigma)=0$ if and only if $\rho=\sigma$, and $1 \geq D(\rho, \sigma)>0$ otherwise
- Data-processing inequality:

$$
D_{t}(\wedge[\rho], \wedge[\sigma]) \leq D_{t}(\rho, \sigma)
$$

Trace distance

- Trace distance:

$$
D_{t}(\rho, \sigma)=\frac{1}{2}\|\rho-\sigma\|_{1}
$$

with trace norm $\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}$

- It holds that $D_{t}(\rho, \sigma)=0$ if and only if $\rho=\sigma$, and $1 \geq D(\rho, \sigma)>0$ otherwise
- Data-processing inequality:

$$
D_{t}(\wedge[\rho], \wedge[\sigma]) \leq D_{t}(\rho, \sigma)
$$

- Decompositition of H into orthogonal parts: $H=P_{+}-P_{-}$with positive matrices $P_{ \pm}$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map Λ acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\wedge(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map Λ acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\wedge(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Proof.

- Let $\Lambda(H)=Q_{+}-Q_{-}$and $H=P_{+}-P_{-}$be decompositions into orthogonal parts $Q_{ \pm} \geq 0$ and $P_{ \pm} \geq 0$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map \wedge acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\wedge(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Proof.

- Let $\Lambda(H)=Q_{+}-Q_{-}$and $H=P_{+}-P_{-}$be decompositions into orthogonal parts $Q_{ \pm} \geq 0$ and $P_{ \pm} \geq 0$
- Exercise: prove that

$$
\begin{aligned}
& \operatorname{Tr}\left(Q_{+}\right) \leq \operatorname{Tr}\left(\wedge\left[P_{+}\right]\right) \\
& \operatorname{Tr}\left(Q_{-}\right) \leq \operatorname{Tr}\left(\wedge\left[P_{-}\right]\right)
\end{aligned}
$$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map \wedge acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\wedge(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Proof.

- Let $\Lambda(H)=Q_{+}-Q_{-}$and $H=P_{+}-P_{-}$be decompositions into orthogonal parts $Q_{ \pm} \geq 0$ and $P_{ \pm} \geq 0$
- Solution: Let Π_{+}be the projector onto the subslace of Q_{+}. From $Q_{+}-Q_{-}=\Lambda\left(P_{+}\right)-\Lambda\left(P_{-}\right)$we obtain

$$
\begin{aligned}
\operatorname{Tr}\left(Q_{+}\right) & =\operatorname{Tr}\left(\Pi_{+}\left[Q_{+}-Q_{-}\right]\right) \\
& =\operatorname{Tr}\left(\Pi_{+} \wedge\left[P_{+}\right]\right)-\operatorname{Tr}\left(\Pi_{+} \wedge\left[P_{-}\right]\right) \leq \operatorname{Tr}\left(\wedge\left[P_{+}\right]\right)
\end{aligned}
$$

and similarly for $\operatorname{Tr}\left(Q_{-}\right)$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map \wedge acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\Lambda(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\wedge(H) & =Q_{+}-Q_{-}, \quad H=P_{+}-P_{-}, \\
\operatorname{Tr}\left(Q_{ \pm}\right) & \leq \operatorname{Tr}\left(\Lambda\left[P_{ \pm}\right]\right)
\end{aligned}
$$

Recalling that Λ is trace preserving, we further have

$$
\operatorname{Tr}\left(Q_{+}+Q_{-}\right) \leq \operatorname{Tr}\left(P_{+}+P_{-}\right)
$$

Trace distance

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map \wedge acting on the Hilbert space of dimension d it holds that

$$
\begin{equation*}
\|\Lambda(H)\|_{1} \leq\|H\|_{1} \tag{1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\wedge(H) & =Q_{+}-Q_{-}, \quad H=P_{+}-P_{-}, \\
\operatorname{Tr}\left(Q_{ \pm}\right) & \leq \operatorname{Tr}\left(\Lambda\left[P_{ \pm}\right]\right)
\end{aligned}
$$

Recalling that Λ is trace preserving, we further have

$$
\operatorname{Tr}\left(Q_{+}+Q_{-}\right) \leq \operatorname{Tr}\left(P_{+}+P_{-}\right)
$$

The proof is complete using the fact that

$$
\|H\|_{1}=\operatorname{Tr}\left(P_{+}+P_{-}\right), \quad\|\Lambda(H)\|_{1}=\operatorname{Tr}\left(Q_{+}+Q_{-}\right)
$$

Trace distance
Proposition 6.5. For any unitary U it holds that

$$
|\operatorname{Tr}(A U)| \leq\|A\|_{1}
$$

Trace distance

Proposition 6.5. For any unitary U it holds that

$$
|\operatorname{Tr}(A U)| \leq\|A\|_{1}
$$

Proof. By the polar decomposition we have

$$
|\operatorname{Tr}(A U)|=\left|\operatorname{Tr}\left(V \sqrt{A^{\dagger} A} U\right)\right|=\left|\operatorname{Tr}\left(\left[A^{\dagger} A\right]^{1 / 4}\left[A^{\dagger} A\right]^{1 / 4} U V\right)\right| .
$$

Trace distance

Proposition 6.5. For any unitary U it holds that

$$
|\operatorname{Tr}(A U)| \leq\|A\|_{1}
$$

Proof. By the polar decomposition we have

$$
|\operatorname{Tr}(A U)|=\left|\operatorname{Tr}\left(V \sqrt{A^{\dagger} A} U\right)\right|=\left|\operatorname{Tr}\left(\left[A^{\dagger} A\right]^{1 / 4}\left[A^{\dagger} A\right]^{1 / 4} U V\right)\right| .
$$

Using the Cauchy-Schwarz inequality $\left|\operatorname{Tr}\left(X^{\dagger} Y\right)\right|^{2} \leq$ $\operatorname{Tr}\left(X^{\dagger} X\right) \operatorname{Tr}\left(Y^{\dagger} Y\right)$ and setting

$$
X=\left[A^{\dagger} A\right]^{1 / 4}, \quad Y=\left[A^{\dagger} A\right]^{1 / 4} U V
$$

we obtain

$$
\begin{aligned}
& |\operatorname{Tr}(A U)| \leq \sqrt{\operatorname{Tr} \sqrt{A^{\dagger} A} \operatorname{Tr}\left(V^{\dagger} U^{\dagger} \sqrt{A^{\dagger} A} U V\right)}=\operatorname{Tr} \sqrt{A^{\dagger} A}=\|A\|_{1} \text {. } \\
& \text { Q.E.D. }
\end{aligned}
$$

Fidelity

- For two quantum states ρ and σ fidelity is defined as

$$
F(\rho, \sigma)=\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}
$$

Fidelity

- For two quantum states ρ and σ fidelity is defined as

$$
F(\rho, \sigma)=\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}
$$

- It holds that

$$
1-F(\rho, \sigma) \leq D_{t}(\rho, \sigma) \leq \sqrt{1-F(\rho, \sigma)^{2}}
$$

Fidelity

- For two quantum states ρ and σ fidelity is defined as

$$
F(\rho, \sigma)=\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}
$$

- It holds that

$$
1-F(\rho, \sigma) \leq D_{t}(\rho, \sigma) \leq \sqrt{1-F(\rho, \sigma)^{2}}
$$

- It follows that $0 \leq F(\rho, \sigma) \leq 1$, and $F(\rho, \sigma)=1$ if and only if $\rho=\sigma$

Fidelity

- For two quantum states ρ and σ fidelity is defined as

$$
F(\rho, \sigma)=\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}
$$

- It holds that

$$
1-F(\rho, \sigma) \leq D_{t}(\rho, \sigma) \leq \sqrt{1-F(\rho, \sigma)^{2}}
$$

- It follows that $0 \leq F(\rho, \sigma) \leq 1$, and $F(\rho, \sigma)=1$ if and only if $\rho=\sigma$
- Let $|\psi\rangle=|\psi\rangle^{A B}$ and $|\phi\rangle=|\phi\rangle^{A B}$ be purifications $\rho=\rho^{B}$ and $\sigma=\sigma^{B}$

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|,
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof. We can write any purification of ρ and σ as follows:

$$
\begin{aligned}
|\psi\rangle & =\left(U_{A} \otimes \sqrt{\rho} U_{B}\right)|m\rangle \\
|\phi\rangle & =\left(V_{A} \otimes \sqrt{\sigma} V_{B}\right)|m\rangle
\end{aligned}
$$

with $d_{A}=d_{B},|m\rangle=\sum_{i}|i\rangle|i\rangle$ and some unitaries U_{A}, U_{B}, V_{A}, and V_{B}.

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof. We can write any purification of ρ and σ as follows:

$$
\begin{aligned}
|\psi\rangle & =\left(U_{A} \otimes \sqrt{\rho} U_{B}\right)|m\rangle \\
|\phi\rangle & =\left(V_{A} \otimes \sqrt{\sigma} V_{B}\right)|m\rangle
\end{aligned}
$$

with $d_{A}=d_{B},|m\rangle=\sum_{i}|i\rangle|i\rangle$ and some unitaries U_{A}, U_{B}, V_{A}, and V_{B}.
We obtain

$$
\left.|\langle\psi \mid \phi\rangle|=\left|\langle m| U_{A}^{\dagger} V_{A} \otimes U_{B}^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_{B}\right| m\right\rangle \mid .
$$

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|,
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof.

$$
\left.|\langle\psi \mid \phi\rangle|=\left|\langle m| U_{A}^{\dagger} V_{A} \otimes U_{B}^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_{B}\right| m\right\rangle \mid
$$

Using the equality

$$
|\langle m| A \otimes B| m\rangle \mid=\operatorname{Tr}\left(A^{\dagger} B\right)
$$

we further obtain

$$
|\langle\psi \mid \phi\rangle|=\left|\operatorname{Tr}\left(V_{A}^{\dagger} U_{A} U_{B}^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_{B}\right)\right| .
$$

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|,
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof.

$$
|\langle\psi \mid \phi\rangle|=\left|\operatorname{Tr}\left(V_{A}^{\dagger} U_{A} U_{B}^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_{B}\right)\right|
$$

Defining the unitary $U=V_{B} V_{A}^{\dagger} U_{A} U_{B}^{\dagger}$ we arrive at

$$
|\langle\psi \mid \phi\rangle|=|\operatorname{Tr}(\sqrt{\rho} \sqrt{\sigma} U)| .
$$

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof.

$$
|\langle\psi \mid \phi\rangle|=\left|\operatorname{Tr}\left(V_{A}^{\dagger} U_{A} U_{B}^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_{B}\right)\right|
$$

Defining the unitary $U=V_{B} V_{A}^{\dagger} U_{A} U_{B}^{\dagger}$ we arrive at

$$
|\langle\psi \mid \phi\rangle|=|\operatorname{Tr}(\sqrt{\rho} \sqrt{\sigma} U)| .
$$

Using Proposition 6.5., we see that

$$
|\langle\psi \mid \phi\rangle| \leq\|\sqrt{\rho} \sqrt{\sigma}\|_{1}=\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}=F(\rho, \sigma)
$$

Fidelity

Theorem 6.3. For any two states ρ and σ it holds that

$$
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle|
$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ.

Proof.

$$
|\langle\psi \mid \phi\rangle|=\left|\operatorname{Tr}\left(\sqrt{\rho} \sqrt{\sigma} V_{B} V_{A}^{\dagger} U_{A} U_{B}^{\dagger}\right)\right| \leq \operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}=F(\rho, \sigma)
$$

Equality can be attained by choosing a unitary V such that $M=$ $\sqrt{M M^{\dagger}} V$, where $M=\sqrt{\rho} \sqrt{\sigma}$. Setting $V_{B}=V^{\dagger}$ and $U_{B}=U_{A}=$ $V_{A}=\mathbb{1}$ the equality is attained.
Q.E.D.

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Proof.

- Every quantum operation \wedge on the system B can be written as

$$
\Lambda\left[\rho^{B}\right]=\operatorname{Tr}_{E}\left[U_{B E}\left(\rho^{B} \otimes|0\rangle\left\langle\left. 0\right|^{E}\right) U_{B E}^{\dagger}\right]\right.
$$

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Proof.

- Every quantum operation \wedge on the system B can be written as

$$
\Lambda\left[\rho^{B}\right]=\operatorname{Tr}_{E}\left[U_{B E}\left(\rho^{B} \otimes|0\rangle\left\langle\left. 0\right|^{E}\right) U_{B E}^{\dagger}\right]\right.
$$

- Let $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ be purifications of ρ^{B} and σ^{B}, such that $F(\rho, \sigma)=|\langle\psi \mid \phi\rangle|$

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Proof.

- Every quantum operation \wedge on the system B can be written as

$$
\Lambda\left[\rho^{B}\right]=\operatorname{Tr}_{E}\left[U_{B E}\left(\rho^{B} \otimes|0\rangle\left\langle\left. 0\right|^{E}\right) U_{B E}^{\dagger}\right]\right.
$$

- Let $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ be purifications of ρ^{B} and σ^{B}, such that $F(\rho, \sigma)=|\langle\psi \mid \phi\rangle|$
- $\mathbb{1} \otimes U_{B E}|\psi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\rho^{B}\right]$ and $\mathbb{1} \otimes U_{B E}|\phi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\sigma^{B}\right]$

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Proof.

- $\mathbb{1} \otimes U_{B E}|\psi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\rho^{B}\right]$ and $\mathbb{1} \otimes U_{B E}|\phi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\sigma^{B}\right]$

Fidelity

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$
F(\wedge[\rho], \wedge[\sigma]) \geq F(\rho, \sigma)
$$

Proof.

- $\mathbb{1} \otimes U_{B E}|\psi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\rho^{B}\right]$ and $\mathbb{1} \otimes U_{B E}|\phi\rangle^{A B}|0\rangle^{E}$ is a purification of $\Lambda\left[\sigma^{B}\right]$
- Using Theorem 6.3 we obtain

$$
\begin{aligned}
& \left.F(\Lambda[\rho], \Lambda[\sigma]) \geq\left|\langle\psi|\langle 0| \mathbb{1} \otimes U_{B E}^{\dagger} U_{B E}\right| \phi\right\rangle|0\rangle|=|\langle\psi \mid \phi\rangle|=F(\rho, \sigma) \\
& \text { Q.E.D. }
\end{aligned}
$$

Fidelity

- Bure distance:

$$
D_{b}(\rho, \sigma)=\sqrt{2-2 F(\rho, \sigma)}
$$

Fidelity

- Bure distance:

$$
D_{b}(\rho, \sigma)=\sqrt{2-2 F(\rho, \sigma)}
$$

- $D_{b}(\rho, \sigma) \geq 0$ with equality if and only if $\rho=\sigma$

Fidelity

- Bure distance:

$$
D_{b}(\rho, \sigma)=\sqrt{2-2 F(\rho, \sigma)}
$$

- $D_{b}(\rho, \sigma) \geq 0$ with equality if and only if $\rho=\sigma$
- D_{b} fulfills the data-processing inequality

$$
D_{b}(\wedge[\rho], \wedge[\sigma]) \leq D_{b}(\rho, \sigma)
$$

for any quantum operation Λ

Outline

(1) Homework problems

(2) Entanglement measures

Trace distance and fidelity
Distance-based entanglement measures

Distance-based entanglement measures

Distance-based entanglement measures

For a distance function $D(\rho, \sigma)$ define

$$
E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)
$$

with infimum over separable states \mathcal{S}

Distance-based entanglement measures

E is an entanglement measure if:
(1) $D(\rho, \sigma) \geq 0$ with equality for $\rho=\sigma$

Distance-based entanglement measures

E is an entanglement measure if:
(1) $D(\rho, \sigma) \geq 0$ with equality for $\rho=\sigma$
(2) D fulfills the data-processing inequality:

$$
D(\wedge[\rho], \wedge[\sigma]) \leq D(\rho, \sigma)
$$

for any quantum operation \wedge

Distance-based entanglement measures

Exercise: prove that

$$
E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)
$$

is an entanglement measure

Distance-based entanglement measures

Proof that $E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)$ does not increase under LOCC:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

Distance-based entanglement measures

Proof that $E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)$ does not increase under LOCC:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

- Let σ be a separable state such that $E(\rho)=D(\rho, \sigma)$

Distance-based entanglement measures

Proof that $E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)$ does not increase under LOCC:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

- Let σ be a separable state such that $E(\rho)=D(\rho, \sigma)$
- Note that $\Lambda_{\text {LOCC }}[\sigma]$ is separable

Distance-based entanglement measures

Proof that $E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)$ does not increase under LOCC:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

- Let σ be a separable state such that $E(\rho)=D(\rho, \sigma)$
- Note that $\Lambda_{\text {LOCC }}[\sigma]$ is separable
- We have

$$
\begin{aligned}
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) & =\min _{\mu \in \mathcal{S}} D\left(\Lambda_{\mathrm{LOCC}}[\rho], \mu\right) \leq D\left(\Lambda_{\mathrm{LOCC}}[\rho], \Lambda_{\mathrm{LOCC}}[\sigma]\right) \\
& \leq D(\rho, \sigma)=E(\rho)
\end{aligned}
$$

Distance-based entanglement measures

Proof that $E(\rho)=\inf _{\sigma \in \mathcal{S}} D(\rho, \sigma)$ does not increase under LOCC:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

- Let σ be a separable state such that $E(\rho)=D(\rho, \sigma)$
- Note that $\Lambda_{\text {LOCC }}[\sigma]$ is separable
- We have

$$
\begin{aligned}
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) & =\min _{\mu \in \mathcal{S}} D\left(\Lambda_{\mathrm{LOCC}}[\rho], \mu\right) \leq D\left(\Lambda_{\mathrm{LOCC}}[\rho], \Lambda_{\mathrm{LOCC}}[\sigma]\right) \\
& \leq D(\rho, \sigma)=E(\rho)
\end{aligned}
$$

- Proof holds also if $\Lambda_{\text {LOCC }}$ is replaced by separable operations

