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Advanced quantum information (6th class)

Every Wednesday 15:15 - 17:00

® Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes (will be updated today):
http://qot.cent.uw.edu.pl/teaching/

* 3. Homework sheet to be submitted via email by 19. April
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@ Homework problems

@® Entanglement measures
Trace distance and fidelity
Distance-based entanglement measures
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Sheet 2, Problem 2 a)

Problem 2 a) Assume that Alice and Bob share a quantum state
Y8 which has the Schmidt decomposition

s—1
% = > Vil el
i=0

where s is the number of non-zero Schmidt components, also
called the Schmidt number. Let now Alice and Bob apply an LOCC
protocol transforming |8 into another pure state |¢)*8. Prove
that the Schmidt number cannot increase in this process.

5/29



Sheet 2, Problem 2 a)

Solution: Consider

s—1 s'—1
W8 = Nael), 9= yulel)
i=0 i=0
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i=0 i=0

* Assume (by contradiction) that there exists an LOCC protocol
converting )8 into |¢)*B with s’ > s
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Sheet 2, Problem 2 a)

Solution: Consider
s—1 s'—1
W =" Valvelh, 19 =" Val el
i=0 i=0

* Assume (by contradiction) that there exists an LOCC protocol
converting )8 into |¢)*B with s’ > s

¢ Define vectors (sorted in decreasing order)
A= (A0,...,5-1,0,...0),
S/

ﬁ: (#O’---,ﬂs—1’~-"#s'—1)
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Solution: Consider

s—1 s'—1
W =" Vaely, %= yulel
i=0 i=0

* Assume (by contradiction) that there exists an LOCC protocol
converting )8 into |¢)*B with s’ > s

¢ Define vectors (sorted in decreasing order)
A= (A0,...,5-1,0,...0),
S/

ﬁ: (#O’---,ﬂs—1’~-"#s'—1)

e Theorem 2.1. = it must be that 1 < i
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Sheet 2, Problem 2 a)

Solution: Consider

s—1 s'—1
W =" Vaely, %= yulel
i=0 i=0

* Assume (by contradiction) that there exists an LOCC protocol
converting )8 into |¢)*B with s’ > s

¢ Define vectors (sorted in decreasing order)
A= (A0,...,5-1,0,...0),
S/

ﬁ: (#O’---,ﬂs—1’~-"#s'—1)

e Theorem 2.1. = it must be that 1 < i
¢ Contradiction:
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Sheet 2, Problem 2 e)

Problem 2 e)

Assume that Alice and Bob share a state |¢)AB. Show that
whenever )8 is entangled Alice and Bob can obtain a Bell state
|®*) with nonzero probability by using LOCC. This proves that all
pure entangled states are single-copy distillable.
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Solution: Consider Schmidt decomposition

)8 = o lao) 1Boy + VT = Ao le) 1B1)

Without loss of generality < 2 < 1
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Alice applies local measurement with Kraus operators

1-2 240 -1
Ko = +| . 210)aol + 11)enl,  Ki = 4 3 10Xl
0 0

8/29



Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

)8 = o lao) 1Boy + VT = Ao le) 1B1)

Without loss of generality < 2 < 1

Alice applies local measurement with Kraus operators

1-2 240 -1
Ko = +| . 210)aol + 11)enl,  Ki = 4 3 10Xl
0 0

Note that

1- 2 210 — 1

KyKo + K| Ki = l@vo)(aol + lart)a1| +

lag){aol = 1

8/29



Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

)8 = o lao) 1Boy + VT = Ao le) 1B1)

Without loss of generality < 2 < 1

Alice applies local measurement with Kraus operators

1-2 240 -1
Ko = +| . 210)aol + 11)enl,  Ki = 4 3 10Xl
0 0

e We have Ko ® 1 [y)*B = vT = 25 (10)|Bo) + 1) [B1))
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Solution: Consider Schmidt decomposition

)8 = o lao) 1Boy + VT = Ao le) 1B1)

Without loss of generality < 2 < 1

Alice applies local measurement with Kraus operators

1-2 240 -1
Ko = +| . 210)aol + 11)enl,  Ki = 4 3 10Xl
0 0

e We have Ko ® 1 [y)*B = vT = 25 (10)|Bo) + 1) [B1))

* Probability of outcome 0: py = (a,llegKo QL) =2(1-20)>0
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Sheet 2, Problem 2 e)

Solution: Consider Schmidt decomposition

)8 = o lao) 1Boy + VT = Ao le) 1B1)

Without loss of generality < 2 < 1

Alice applies local measurement with Kraus operators

1-2 240 -1
Ko = +| . 210)aol + 11)enl,  Ki = 4 3 10Xl
0 0

e We have Ko ® 1 [y)*B = vT = 25 (10)|Bo) + 1) [B1))
* Probability of outcome 0: py = (a,llegKo QL) =2(1-20)>0
® Post-measurement state:

T Ko ® L)% = (10 Bo) + 1) 181))
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Sheet 2, Problem 2 e)

Probability of outcome 0 and post-measurement state:
po = WIK Ko ® 1) = 2(1 = Ao) > O,

1 1
—Ko® 1) = — (|0 1
N 0® 1) \/§(| ) By + 1) 181))
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Sheet 2, Problem 2 e)

Probability of outcome 0 and post-measurement state:
po = WIK Ko ® 1) = 2(1 = Ao) > O,

1 1
—Ko® 1) = — (|0 1
N 0® 1) \/§(| ) By + 1) 181))

Bob applies local unitary U = |0){Bo| + |1){51|
= Alice and Bob end with [¢T) = %(|oo> +111))
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Sheet 2, Problem 2 f)

Problem 2 f) For ds = dg = 3 consider the following state for
0<ac<t:

+ O O O O © O

)
ﬂomooom
0

n

on|
+ on
Q

iy
|

QD
N

—

O OO0 OO OO Nn O
O OO OO O M OO
O OO OO MY © oo
O OO0 » OO O oo
O 9 O OO OO oo

WD OO OH OO OD
QD OO OH OO0 OD

N
N|

Prove that p, has positive partial transpose for 0 < a < 1. Show
numerically that the realigned matrix p fulfills ||oz]|1 > 1 for all

0 < a < 1. This proves that the state p, is bound entangled in the
range0 <a < 1.
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Sheet 2, Problem 2 f)

0
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Sheet 2, Problem 2 f)

Eigenvalues of paTB:

1+2a- V1 -2a+ 232

2(1+ 8a) ’
1+2a+ V1 -2a+2a2
2(1+8a) ’

a a 2a 2a

b 9 9 50’0’0
1+8a 1+8a 1+8a 1+ 8a
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Eigenvalues of paTB:

1+2a- V1 -2a+ 232

2(1+ 8a) ’
142a+ V1-2a+2a2
2(1+8a) ’

a a 2a 2a

b 9 9 50’0’0
1+8a 1+8a 1+8a 1+ 8a

1+2a— V1-2a+2a2

Potentially negative eigenvalue: 5(1782)
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Sheet 2, Problem 2 f)

Eigenvalues of paTB:

1+2a- V1 -2a+ 232

2(1+ 8a) ’
142a+ V1-2a+2a2
2(1+8a) ’

a a 2a 2a

b 9 9 50’0’0
1+8a 1+8a 1+8a 1+ 8a

1+2a— V1-2a+2a2

Potentially negative eigenvalue: 5(1782)

Note that
(1+2a)®-[1-2a+2a°| =2a(3+a) 20

= p;B has no negative eigenvalues
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Sheet 2, Problem 2 f)
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Sheet 2, Problem 2 f)
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lloally as function of a
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Sheet 2, Problem 2 f)

In summary for 0 < a < 1 we proved that:

o p;B is nonnegative (= p, is not distillable)
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In summary for 0 < a < 1 we proved that:

o p;B is nonnegative (= p, is not distillable)

* ||pall; > 1 (= pa is entangled)

15/29



Sheet 2, Problem 2 f)

In summary for 0 < a < 1 we proved that:
o p;B is nonnegative (= p, is not distillable)
® |pally > 1 (= pa is entangled)

® = p, is bound entangled
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@® Entanglement measures
Trace distance and fidelity
Distance-based entanglement measures
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Entanglement quantification

How much entanglement is in a given quantum state p?
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Entanglement quantification

How much entanglement is in a given quantum state p?

Entanglement measure: function E(p) with following properties
@ E(p) > 0, and equality holds if p is separable,

® E does not increase under local operations and classical
communication:

E(ALocclp]) < E(p)
for any LOCC protocol ALocc
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Entanglement quantification

How much entanglement is in a given quantum state p?

Entanglement measure: function E(p) with following properties
@ E(p) > 0, and equality holds if p is separable,

® E does not increase under local operations and classical
communication:

E(ALocclp]) < E(p)
for any LOCC protocol ALocc

Many entanglement measures have additional features:
* Convexity E (%, pio}'®) < % piE (o/'°)
e Strong monotonicity: Z,qiE(O';“B) < E(pAB)
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Entanglement of formation

¢ For pure states:
Er(lv)"®) = S(o")
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Entanglement of formation

® For pure states:
Er(l)*%) = S(o")

® For mixed states:
Er(p"®) = min > piEs(1yi)*®)
i

Minimum is taken over all decompositions {p;, [)*®

that p*8 = 3, pi lyi)(wil*®

} such
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Entanglement of formation

¢ For pure states:
Er(lv)"®) = S(o")

® For mixed states:
Er(p"®) = min > piEs(1yi)*®)
i

Minimum is taken over all decompositions {p;, [;})*8} such

that p*8 = 3, pi lyi)(wil*®

® £;is convex and fulfills strong monotonicity

® Exact expression can be given for 2-qubit states
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Outline

@® Entanglement measures
Trace distance and fidelity
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Trace distance

* Trace distance:
1
Di(p,0) = > llo = ol

with trace norm |[M|l; = Tr VMM

20/29



Trace distance

* Trace distance:
1
Di(p,0) = > llo = ol

with trace norm |[M|l; = Tr VMM

* |t holds that D;(p, o) = 0 if and only if p = ¢, and
1> D(p, o) > 0 otherwise
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Trace distance

* Trace distance:

1
Di(p,o) = > llo — olly

with trace norm |[M|l; = Tr VMM

* |t holds that D;(p, o) = 0 if and only if p = ¢, and
1> D(p, o) > 0 otherwise

* Data-processing inequality:

Di(Alpl, Alo]) < Di(p, o)
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Trace distance

* Trace distance:
1
Di(p,0) = > llo = ol

with trace norm |[M|l; = Tr VMM

* |t holds that D;(p, o) = 0 if and only if p = ¢, and
1> D(p, o) > 0 otherwise

* Data-processing inequality:
Di(Alpl, Alo]) < Di(p, o)

® Decompositition of H into orthogonal parts: H = P, — P_ with
positive matrices P.
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

A (H)||, < IHIl (1)
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

A (H)||, < IHIl (1)

Proof.

® Let A(H) = Q4 — Q_and H = P, — P_ be decompositions
into orthogonal parts Q. >0and P. >0
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

A (H)||, < IHIl (1)

Proof.

® Let A(H) = Q4 — Q_and H = P, — P_ be decompositions
into orthogonal parts Q. >0and P. >0

¢ Exercise: prove that

Tr(Qy) < Tr(A[P])
Tr(Q-) < Tr(A[P-])
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

IA(H)|, < lIHI; (1)

Proof.

® Let A(H) = Q4 — Q_and H = P, — P_ be decompositions
into orthogonal parts Q. >0and P. >0

¢ Solution: Let I be the projector onto the subslace of Q...
From Q1 — Q- = A(P4) — A(P-) we obtain

Tr(Qy) =Tr(N4 [Qr - Q)
= Tr (M4A[P4]) = Tr (MeA[P-]) < Tr (A [P4])

and similarly for Tr (Q-)
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

IA(H)|, < lIHI; (1)

Proof.

ANH) =Q,-Q., H=P, -P.,
Tr(Qs) < Tr (A [Ps])

Recalling that A is trace preserving, we further have

Tr(Qr+ Q) <Tr(Py +P-)
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Trace distance

Theorem 6.2. For any Hermitian d x d matrix H and any trace
preserving positive linear map A acting on the Hilbert space of
dimension d it holds that

IA(H)|, < lIHI; (1)

Proof.

ANH) =Q,-Q., H=P, -P.,
Tr(Qs) < Tr (A [Ps])

Recalling that A is trace preserving, we further have
Tr(Qr+ Q) <Tr(Py +P-)
The proof is complete using the fact that

IHIl1 = Tr(P+ + P-), IIAN(H)Ilh = Tr(Qy + Q-)
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Trace distance
Proposition 6.5. For any unitary U it holds that

|Tr (AU)| < 1IAIl4
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Trace distance
Proposition 6.5. For any unitary U it holds that

|Tr (AU)| < 1IAIl4

Proof. By the polar decomposition we have

Tr(v\/mu)‘ - Tr([A*A]”4 [atA]" UV)’.

|Tr (AU)| =
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Trace distance
Proposition 6.5. For any unitary U it holds that

[Tr (AU)| < IIAIl4
Proof. By the polar decomposition we have
[Tr (AU)| = Tr(v\/ATAu)‘ = [Tr([ata] " [aTA] " UV)’.

IA

Using the Cauchy-Schwarz inequality |Tr(XTY)|2
Tr (XTX) Tr (YT Y) and setting

x=[atA]", v =[ata]"uv

we obtain

ITr (AU)| < \/Tr ATA Tr(VTUT \/ATAUV) — Tr VATA = A]l; .

Q.E.D. e



Fidelity

¢ For two quantum states p and o fidelity is defined as

Fp, o) = Tr 4/ Voo vp
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¢ For two quantum states p and o fidelity is defined as

Fp, o) = Tr 4/ Voo vp

® |t holds that

1—F(p,0) < Di(p, o) < \/m
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Fidelity

¢ For two quantum states p and o fidelity is defined as

Fp, o) = Tr 4/ Voo vp

® It holds that
1= F(p,0) < Di(p,0) < J1 = F(p,0)>?

* It follows that 0 < F(p,o) < 1, and F(p,o) = 1 if and only if
p=0c
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Fidelity

For two quantum states p and o fidelity is defined as

F(p,0) = Tr y/ Voo \p

It holds that

1—F(p,0) < Di(p, o) < \/m

It follows that 0 < F(p, o) < 1, and F(p, o) = 1 if and only if
p=0

Let |y) = [v)*B and |¢) = |¢)*B be purifications p = p? and
g = O'B
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof. We can write any purification of p and o as follows:

ly) = (Ua ® voUg) Im),
¢) = (Va ® VoVi) Im)

with da = dg, |m) = 2 ;i) |i) and some unitaries Ua, Ug, Va, and
V5.
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof. We can write any purification of p and o as follows:
) = (Ua ® vpUg)Im),
¢) = (Va ® VoVi) Im)

with da = dg, |m) = 2 ;i) |i) and some unitaries Ua, Ug, Va, and

Vs.
We obtain

(A8 = [(mIU} Va ® U VB Vo Valm))
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof. . '
gl = (MU} Va ® U, vip Vo Valm)

Using the equality
Km|A ® Blm)| = Tr (A"‘B)
we further obtain

Wi = [Tr (V3 UaUg VB Vo Va)|-
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof. ‘
WIS = [ Tr (V4 Ua UL VB Vo V)|

Defining the unitary U = VgV Ua U}, we arrive at

i) = [Tr (Vo Vo)
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Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof. '
WIS = [ Tr (V4 Ua UL VB Vo V)|

Defining the unitary U = VgV Ua U}, we arrive at
i) = [Tr (Vo Vo)

Using Proposition 6.5., we see that

Wie)l < [[Np V], = Tr y Voo VB = Flp,o).

24/29



Fidelity

Theorem 6.3. For any two states p and o it holds that

F(p.0) = max Kylp)l

where the maximum is taken over all purifications |¢) of p and |¢)
of o.

Proof.

(Wl = [Tr (VP VorVa V) Ua Up)| < Tr [ VBor vB = Flp. o)

Equality can be attained by choosing a unitary V such that M =
VMM?V, where M = yp+o. Setting Vg = V' and Ug = U =
V4 = 1 the equality is attained.

Q.E.D.
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Fidelity

Theorem 6.4. For any two quantum states p and o and any
quantum operation A it holds that

F(Alpl,Alo]) = F (p, o)
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Theorem 6.4. For any two quantum states p and o and any
quantum operation A it holds that

F(Alpl,Alo]) = F (p, o)

Proof.
¢ Every quantum operation A on the system B can be written as

A [pB] = Tre [UBE (K®e |0><0|E) UEE]
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Fidelity

Theorem 6.4. For any two quantum states p and o and any
quantum operation A it holds that

F(Alpl,Alo]) = F (p, o)

Proof.
¢ Every quantum operation A on the system B can be written as

A [pB] = Tre [UBE (K®e |0><0|E) UEE]

e Let [y)*8 and |¢)*B be purifications of p& and o8, such that
F(p, o) = Kylg)l

* 1 ® Uge [v)*B|0)E is a purification of A[p®] and
1 ® Uge [¢)*8 |0)E is a purification of A[o?]
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Fidelity

Theorem 6.4. For any two quantum states p and o and any
quantum operation A it holds that

F(Alpl,Alo]) = F (p, o)

Proof.

* 1 ® Uge [¢)*? |0) is a purification of A[p?] and
1 ® Uge [¢)*8 |0)F is a purification of A[o®]
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Fidelity

Theorem 6.4. For any two quantum states p and o and any
quantum operation A it holds that

F (Aol Nlo]) > F (p,o)
Proof.

* 1 ® Uge )P |0) is a purification of A[p®] and
1 ® Uge [¢)*8 |0)F is a purification of A[o®]
¢ Using Theorem 6.3 we obtain

F (Aol Alo]) > [0l T @ Ul Use I8 10)] = Kuig)l = Flo, )

Q.E.D.
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Fidelity

¢ Bure distance:

Dp(p,0) = 2 - 2F(p,0)
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® Bure distance:
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® Dy(p,0) > 0 with equality if and only if p = o
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Fidelity

¢ Bure distance:

Dp(p,0) = 2 - 2F(p,0)

® Dy(p,0) > 0 with equality if and only if p = o

¢ D, fulfills the data-processing inequality

Dp(Alp], Alo]) < Do (p, o)

for any quantum operation A
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Outline

@® Entanglement measures

Distance-based entanglement measures

27/29



Distance-based entanglement measures
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Distance-based entanglement measures

For a distance function D(p, o) define
E(p) = inf D(p,0)
oeS

with infimum over separable states S
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Distance-based entanglement measures

E is an entanglement measure if:
@ D(p, o) > 0 with equality for p = o
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Distance-based entanglement measures

E is an entanglement measure if:
@ D(p, o) > 0 with equality for p = o
@® D fulfills the data-processing inequality:

D(A[pl, Alo]) < D(p, o)

for any quantum operation A
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Distance-based entanglement measures

E(p) = inf D(p. )

is an entanglement measure
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Distance-based entanglement measures

Proof that E(p) = inf,es D(p, o) does not increase under LOCC:

E(ALocclp]) < E(p)
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* Note that ALocc[o] is separable
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Distance-based entanglement measures

Proof that E(p) = inf,es D(p, o) does not increase under LOCC:

E(ALocclp]) < E(p)

* Let o be a separable state such that E(p) = D(p, o)
* Note that ALocc[o] is separable
* We have

E (ALocclp]) = Lneig D (ALocc[p), 1) < D (ALocclp], ALocclo])

< D(p,o) = E(p)
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Distance-based entanglement measures

Proof that E(p) = inf,es D(p, o) does not increase under LOCC:

E(ALocclp]) < E(p)

Let o be a separable state such that E(p) = D(p, o)
Note that ALocc[o] is separable
* We have

E (ALocclp]) = Lneig D (ALocc[p), 1) < D (ALocclp], ALocclo])

< D(p,o) = E(p)

Proof holds also if Apocc is replaced by separable operations
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