Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

6th class April 6, 2022

Advanced quantum information (6th class)

- Every Wednesday 15:15 17:00
- Literature:
 - Nielsen and Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press (2012)
 - Horodecki *et al.*, *Quantum entanglement*, Rev. Mod. Phys. **81**, 865 (2009)
- Howework and lecture notes (will be updated today): http://qot.cent.uw.edu.pl/teaching/
- 3. Homework sheet to be submitted via email by 19. April

Outline

2 Entanglement measures Trace distance and fidelity Distance-based entanglement measures

Outline

1 Homework problems

Entanglement measures Trace distance and fidelity Distance-based entanglement measures

Problem 2 a) Assume that Alice and Bob share a quantum state $|\psi\rangle^{AB}$ which has the Schmidt decomposition

$$|\psi\rangle^{AB} = \sum_{i=0}^{\mathsf{s}-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle,$$

where *s* is the number of non-zero Schmidt components, also called the <u>Schmidt number</u>. Let now Alice and Bob apply an LOCC protocol transforming $|\psi\rangle^{AB}$ into another pure state $|\phi\rangle^{AB}$. Prove that the Schmidt number cannot increase in this process.

$$|\psi\rangle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle, \quad |\phi\rangle^{AB} = \sum_{i=0}^{s'-1} \sqrt{\mu_i} |i\rangle \otimes |i\rangle$$

$$|\psi\rangle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle, \quad |\phi\rangle^{AB} = \sum_{i=0}^{s'-1} \sqrt{\mu_i} |i\rangle \otimes |i\rangle$$

• Assume (by contradiction) that there exists an LOCC protocol converting $|\psi\rangle^{AB}$ into $|\phi\rangle^{AB}$ with s' > s

$$|\psi
angle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i
angle \otimes |i
angle, \qquad |\phi
angle^{AB} = \sum_{i=0}^{s'-1} \sqrt{\mu_i} |i
angle \otimes |i
angle$$

- Assume (by contradiction) that there exists an LOCC protocol converting |ψ⟩^{AB} into |φ⟩^{AB} with s' > s
- Define vectors (sorted in decreasing order)

$$\vec{\lambda} = (\underbrace{\lambda_0, \dots, \lambda_{s-1}, 0, \dots 0}_{s'}),$$
$$\vec{\mu} = (\mu_0, \dots, \mu_{s-1}, \dots, \mu_{s'-1})$$

$$|\psi\rangle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle, \quad |\phi\rangle^{AB} = \sum_{i=0}^{s'-1} \sqrt{\mu_i} |i\rangle \otimes |i\rangle$$

- Assume (by contradiction) that there exists an LOCC protocol converting |ψ⟩^{AB} into |φ⟩^{AB} with s' > s
- Define vectors (sorted in decreasing order)

$$\vec{\lambda} = (\underbrace{\lambda_0, \dots, \lambda_{s-1}, 0, \dots 0}_{s'}),$$
$$\vec{\mu} = (\mu_0, \dots, \mu_{s-1}, \dots, \mu_{s'-1})$$

• Theorem 2.1. \Rightarrow it must be that $\vec{\lambda} < \vec{\mu}$

$$|\psi\rangle^{AB} = \sum_{i=0}^{s-1} \sqrt{\lambda_i} |i\rangle \otimes |i\rangle, \quad |\phi\rangle^{AB} = \sum_{i=0}^{s'-1} \sqrt{\mu_i} |i\rangle \otimes |i\rangle$$

- Assume (by contradiction) that there exists an LOCC protocol converting |ψ⟩^{AB} into |φ⟩^{AB} with s' > s
- Define vectors (sorted in decreasing order)

$$\vec{\lambda} = (\underbrace{\lambda_0, \dots, \lambda_{s-1}, 0, \dots 0}_{s'}),$$
$$\vec{\mu} = (\mu_0, \dots, \mu_{s-1}, \dots, \mu_{s'-1})$$

- Theorem 2.1. \Rightarrow it must be that $\vec{\lambda} < \vec{\mu}$
- Contradiction:

$$\sum_{i=0}^{s-1} \lambda_i = 1 > \sum_{i=0}^{s-1} \mu_i$$

Problem 2 e)

Assume that Alice and Bob share a state $|\psi\rangle^{AB}$. Show that whenever $|\psi\rangle^{AB}$ is entangled Alice and Bob can obtain a Bell state $|\Phi^+\rangle$ with nonzero probability by using LOCC. This proves that all pure entangled states are single-copy distillable.

Solution: Consider Schmidt decomposition

$$\ket{\psi}^{AB} = \sqrt{\lambda_0} \ket{\alpha_0} \ket{\beta_0} + \sqrt{1 - \lambda_0} \ket{\alpha_1} \ket{\beta_1}$$

Without loss of generality $\frac{1}{2} \leq \lambda_0 < 1$

Solution: Consider Schmidt decomposition

$$|\psi\rangle^{AB} = \sqrt{\lambda_0} |lpha_0\rangle |eta_0
angle + \sqrt{1 - \lambda_0} |lpha_1
angle |eta_1
angle$$

Without loss of generality $\frac{1}{2} \le \lambda_0 < 1$

Alice applies local measurement with Kraus operators

$$\mathcal{K}_{0}=\sqrt{rac{1-\lambda_{0}}{\lambda_{0}}}\left|0
ight
angle\!\left\langle lpha_{0}
ight|+\left|1
ight
angle\!\left\langle lpha_{1}
ight|,~~\mathcal{K}_{1}=\sqrt{rac{2\lambda_{0}-1}{\lambda_{0}}}\left|0
ight
angle\!\left\langle lpha_{0}
ight|$$

Solution: Consider Schmidt decomposition

$$|\psi\rangle^{AB} = \sqrt{\lambda_0} |lpha_0\rangle |eta_0
angle + \sqrt{1 - \lambda_0} |lpha_1
angle |eta_1
angle$$

Without loss of generality $\frac{1}{2} \le \lambda_0 < 1$

Alice applies local measurement with Kraus operators

$$K_{0} = \sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}} |0\rangle\langle\alpha_{0}| + |1\rangle\langle\alpha_{1}|, \quad K_{1} = \sqrt{\frac{2\lambda_{0}-1}{\lambda_{0}}} |0\rangle\langle\alpha_{0}|$$

Note that

$$K_{0}^{\dagger}K_{0}+K_{1}^{\dagger}K_{1}=\frac{1-\lambda_{0}}{\lambda_{0}}|\alpha_{0}\rangle\langle\alpha_{0}|+|\alpha_{1}\rangle\langle\alpha_{1}|+\frac{2\lambda_{0}-1}{\lambda_{0}}|\alpha_{0}\rangle\langle\alpha_{0}|=\mathbb{I}$$

Solution: Consider Schmidt decomposition

$$|\psi\rangle^{AB} = \sqrt{\lambda_0} |lpha_0\rangle |eta_0
angle + \sqrt{1 - \lambda_0} |lpha_1
angle |eta_1
angle$$

Without loss of generality $\frac{1}{2} \le \lambda_0 < 1$

Alice applies local measurement with Kraus operators

$$K_{0} = \sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}} |0\rangle\langle\alpha_{0}| + |1\rangle\langle\alpha_{1}|, \quad K_{1} = \sqrt{\frac{2\lambda_{0}-1}{\lambda_{0}}} |0\rangle\langle\alpha_{0}|$$

• We have $K_0 \otimes \mathbb{1} \ket{\psi}^{AB} = \sqrt{1 - \lambda_0} \left(\ket{0} \ket{\beta_0} + \ket{1} \ket{\beta_1} \right)$

Solution: Consider Schmidt decomposition

$$\ket{\psi}^{AB} = \sqrt{\lambda_0} \ket{\alpha_0} \ket{\beta_0} + \sqrt{1 - \lambda_0} \ket{\alpha_1} \ket{\beta_1}$$

Without loss of generality $\frac{1}{2} \le \lambda_0 < 1$

Alice applies local measurement with Kraus operators

$$K_{0} = \sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}} |0\rangle\langle\alpha_{0}| + |1\rangle\langle\alpha_{1}|, \quad K_{1} = \sqrt{\frac{2\lambda_{0}-1}{\lambda_{0}}} |0\rangle\langle\alpha_{0}|$$

• We have $K_0 \otimes \mathbb{1} \ket{\psi}^{AB} = \sqrt{1 - \lambda_0} \left(\ket{0} \ket{\beta_0} + \ket{1} \ket{\beta_1} \right)$

• Probability of outcome 0: $p_0 = \langle \psi | K_0^{\dagger} K_0 \otimes \mathbb{1} | \psi \rangle = 2(1 - \lambda_0) > 0$

Solution: Consider Schmidt decomposition

$$\ket{\psi}^{AB} = \sqrt{\lambda_0} \ket{\alpha_0} \ket{\beta_0} + \sqrt{1 - \lambda_0} \ket{\alpha_1} \ket{\beta_1}$$

Without loss of generality $\frac{1}{2} \le \lambda_0 < 1$

Alice applies local measurement with Kraus operators

$$K_{0} = \sqrt{\frac{1-\lambda_{0}}{\lambda_{0}}} |0\rangle\langle\alpha_{0}| + |1\rangle\langle\alpha_{1}|, \quad K_{1} = \sqrt{\frac{2\lambda_{0}-1}{\lambda_{0}}} |0\rangle\langle\alpha_{0}|$$

- We have $K_0 \otimes \mathbb{1} \ket{\psi}^{AB} = \sqrt{1 \lambda_0} \left(\ket{0} \ket{\beta_0} + \ket{1} \ket{\beta_1} \right)$
- Probability of outcome 0: $p_0 = \langle \psi | K_0^{\dagger} K_0 \otimes \mathbb{1} | \psi \rangle = 2(1 \lambda_0) > 0$
- Post-measurement state: $\frac{1}{\sqrt{p_0}} K_0 \otimes \mathbb{1} |\psi\rangle^{AB} = \frac{1}{\sqrt{2}} (|0\rangle |\beta_0\rangle + |1\rangle |\beta_1\rangle)$

Probability of outcome 0 and post-measurement state:

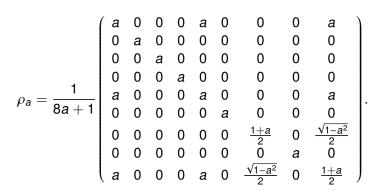
$$\begin{split} p_{0} &= \langle \psi | K_{0}^{\dagger} K_{0} \otimes \mathbb{1} | \psi \rangle = 2 \big(1 - \lambda_{0} \big) > 0, \\ &\frac{1}{\sqrt{p_{0}}} K_{0} \otimes \mathbb{1} | \psi \rangle^{AB} = \frac{1}{\sqrt{2}} \left(| 0 \rangle | \beta_{0} \rangle + | 1 \rangle | \beta_{1} \rangle \right) \end{split}$$

Probability of outcome 0 and post-measurement state:

$$\begin{split} p_{0} &= \langle \psi | K_{0}^{\dagger} K_{0} \otimes \mathbb{1} | \psi \rangle = 2 \big(1 - \lambda_{0} \big) > 0, \\ &\frac{1}{\sqrt{p_{0}}} K_{0} \otimes \mathbb{1} | \psi \rangle^{AB} = \frac{1}{\sqrt{2}} \left(| 0 \rangle | \beta_{0} \rangle + | 1 \rangle | \beta_{1} \rangle \right) \end{split}$$

Bob applies local unitary $U = |0\rangle\langle\beta_0| + |1\rangle\langle\beta_1|$ \Rightarrow Alice and Bob end with $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Problem 2 f) For $d_A = d_B = 3$ consider the following state for $0 \le a \le 1$:



Prove that ρ_a has positive partial transpose for $0 \le a \le 1$. Show numerically that the realigned matrix ρ_a fulfills $\|\rho_a\|_1 > 1$ for all 0 < a < 1. This proves that the state ρ_a is bound entangled in the range 0 < a < 1.

Eigenvalues of $\rho_a^{T_B}$:

$$\frac{1+2a-\sqrt{1-2a+2a^2}}{2(1+8a)},$$

$$\frac{1+2a+\sqrt{1-2a+2a^2}}{2(1+8a)},$$

$$\frac{a}{1+8a}, \frac{a}{1+8a}, \frac{2a}{1+8a}, \frac{2a}{1+8a}, 0, 0, 0$$

Eigenvalues of $\rho_a^{T_B}$:

$$\frac{1+2a-\sqrt{1-2a+2a^2}}{2(1+8a)},$$

$$\frac{1+2a+\sqrt{1-2a+2a^2}}{2(1+8a)},$$

$$\frac{a}{1+8a}, \frac{a}{1+8a}, \frac{2a}{1+8a}, \frac{2a}{1+8a}, 0, 0, 0$$

Potentially negative eigenvalue: $\frac{1+2a-\sqrt{1-2a+2a^2}}{2(1+8a)}$

Eigenvalues of $\rho_a^{T_B}$:

$$\frac{1+2a-\sqrt{1-2a+2a^2}}{2(1+8a)},$$

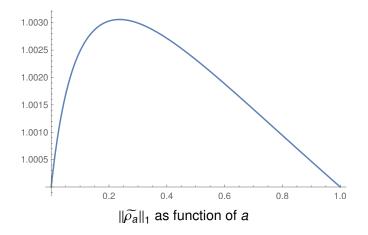
$$\frac{1+2a+\sqrt{1-2a+2a^2}}{2(1+8a)},$$

$$\frac{a}{1+8a}, \frac{a}{1+8a}, \frac{2a}{1+8a}, \frac{2a}{1+8a}, 0, 0, 0$$

Potentially negative eigenvalue: $\frac{1+2a-\sqrt{1-2a+2a^2}}{2(1+8a)}$ Note that

$$(1+2a)^2 - [1-2a+2a^2] = 2a(3+a) \ge 0$$

 $\Rightarrow \rho_a^{T_B}$ has no negative eigenvalues



In summary for 0 < a < 1 we proved that:

• $\rho_a^{T_B}$ is nonnegative ($\Rightarrow \rho_a$ is not distillable)

In summary for 0 < a < 1 we proved that:

- $\rho_a^{T_B}$ is nonnegative ($\Rightarrow \rho_a$ is not distillable)
- $\|\widetilde{\rho_a}\|_1 > 1 \iff \rho_a \text{ is entangled})$

In summary for 0 < a < 1 we proved that:

- $\rho_a^{T_B}$ is nonnegative ($\Rightarrow \rho_a$ is not distillable)
- $\|\widetilde{\rho_a}\|_1 > 1 \iff \rho_a \text{ is entangled})$
- $\Rightarrow \rho_a$ is bound entangled

Outline

Homework problems

2 Entanglement measures Trace distance and fidelity Distance-based entanglement measures

How much entanglement is in a given quantum state ρ ?

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties

1 $E(\rho) \ge 0$, and equality holds if ρ is separable,

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties

1 $E(\rho) \ge 0$, and equality holds if ρ is separable,

E does not increase under local operations and classical communication:

 $E(\Lambda_{\rm LOCC}[\rho]) \leq E(\rho)$

for any LOCC protocol Λ_{LOCC}

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties

- **1** $E(\rho) \ge 0$, and equality holds if ρ is separable,
- E does not increase under local operations and classical communication:

 $E(\Lambda_{\rm LOCC}[\rho]) \leq E(\rho)$

for any LOCC protocol Λ_{LOCC}

Many entanglement measures have additional features:

- Convexity $E\left(\sum_{i} p_{i} \rho_{i}^{AB}\right) \leq \sum_{i} p_{i} E\left(\rho_{i}^{AB}\right)$
- Strong monotonicity: $\sum_{i} q_{i} E\left(\sigma_{i}^{AB}\right) \leq E\left(\rho^{AB}\right)$

Entanglement of formation

• For pure states:

$$E_f(\ket{\psi}^{AB}) = S(
ho^A)$$

Entanglement of formation

• For pure states:

$$E_f(\ket{\psi}^{AB}) = S(
ho^A)$$

· For mixed states:

$$E_{f}(\rho^{AB}) = \min \sum_{i} p_{i} E_{f}(|\psi_{i}\rangle^{AB})$$

Minimum is taken over all decompositions $\{p_i, |\psi_i\rangle^{AB}\}$ such that $\rho^{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i|^{AB}$

Entanglement of formation

• For pure states:

$$E_f(\ket{\psi}^{AB}) = S(
ho^A)$$

· For mixed states:

$$E_f(\rho^{AB}) = \min \sum_i p_i E_f(|\psi_i\rangle^{AB})$$

Minimum is taken over all decompositions $\{p_i, |\psi_i\rangle^{AB}\}$ such that $\rho^{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i|^{AB}$

• E_f is convex and fulfills strong monotonicity

Entanglement of formation

• For pure states:

$$E_f(\ket{\psi}^{AB}) = S(
ho^A)$$

· For mixed states:

$$E_f(\rho^{AB}) = \min \sum_i p_i E_f(|\psi_i\rangle^{AB})$$

Minimum is taken over all decompositions $\{p_i, |\psi_i\rangle^{AB}\}$ such that $\rho^{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i|^{AB}$

- E_f is convex and fulfills strong monotonicity
- Exact expression can be given for 2-qubit states

Outline

Homework problems

2 Entanglement measures Trace distance and fidelity

• Trace distance:

$$D_t(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$

with trace norm $||M||_1 = \text{Tr } \sqrt{M^{\dagger}M}$

• Trace distance:

$$D_t(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$

with trace norm $||M||_1 = \text{Tr } \sqrt{M^{\dagger}M}$

• It holds that $D_t(\rho, \sigma) = 0$ if and only if $\rho = \sigma$, and $1 \ge D(\rho, \sigma) > 0$ otherwise

• Trace distance:

$$D_t(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$

with trace norm $||M||_1 = \text{Tr } \sqrt{M^{\dagger}M}$

- It holds that $D_t(\rho, \sigma) = 0$ if and only if $\rho = \sigma$, and $1 \ge D(\rho, \sigma) > 0$ otherwise
- Data-processing inequality:

 $D_t(\Lambda[\rho], \Lambda[\sigma]) \leq D_t(\rho, \sigma)$

• Trace distance:

$$D_t(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_1$$

with trace norm $||M||_1 = \text{Tr } \sqrt{M^{\dagger}M}$

- It holds that $D_t(\rho, \sigma) = 0$ if and only if $\rho = \sigma$, and $1 \ge D(\rho, \sigma) > 0$ otherwise
- Data-processing inequality:

$$D_t(\Lambda[\rho], \Lambda[\sigma]) \leq D_t(\rho, \sigma)$$

Decompositition of *H* into orthogonal parts: *H* = *P*₊ - *P*₋ with positive matrices *P*_±

Theorem 6.2. For any Hermitian $d \times d$ matrix *H* and any trace preserving positive linear map Λ acting on the Hilbert space of dimension *d* it holds that

$$\left\| \Lambda \left(H \right) \right\|_{1} \le \|H\|_{1} \tag{1}$$

Theorem 6.2. For any Hermitian $d \times d$ matrix *H* and any trace preserving positive linear map Λ acting on the Hilbert space of dimension *d* it holds that

$$\left\|\Lambda\left(H\right)\right\|_{1} \leq \|H\|_{1}$$

(1)

Proof.

 Let ∧ (H) = Q₊ - Q₋ and H = P₊ - P₋ be decompositions into orthogonal parts Q_± ≥ 0 and P_± ≥ 0

Theorem 6.2. For any Hermitian $d \times d$ matrix H and any trace preserving positive linear map Λ acting on the Hilbert space of dimension d it holds that

$$\left\|\Lambda\left(H\right)\right\|_{1} \leq \|H\|_{1}$$

(1)

Proof.

- Let Λ (H) = Q₊ − Q_− and H = P₊ − P_− be decompositions into orthogonal parts Q_± ≥ 0 and P_± ≥ 0
- Exercise: prove that

 $\operatorname{Tr} (Q_{+}) \leq \operatorname{Tr} (\Lambda [P_{+}])$ $\operatorname{Tr} (Q_{-}) \leq \operatorname{Tr} (\Lambda [P_{-}])$

Theorem 6.2. For any Hermitian $d \times d$ matrix *H* and any trace preserving positive linear map Λ acting on the Hilbert space of dimension *d* it holds that

$$\left\|\Lambda\left(H\right)\right\|_{1} \leq \|H\|_{1}$$

(1)

Proof.

- Let ∧ (H) = Q₊ Q₋ and H = P₊ P₋ be decompositions into orthogonal parts Q_± ≥ 0 and P_± ≥ 0
- Solution: Let Π_+ be the projector onto the subslace of Q_+ . From $Q_+ - Q_- = \Lambda(P_+) - \Lambda(P_-)$ we obtain

$$\begin{aligned} \mathsf{Tr}\left(\mathcal{Q}_{+}\right) &= \mathsf{Tr}\left(\Pi_{+}\left[\mathcal{Q}_{+}-\mathcal{Q}_{-}\right]\right) \\ &= \mathsf{Tr}\left(\Pi_{+}\Lambda\left[\mathcal{P}_{+}\right]\right) - \mathsf{Tr}\left(\Pi_{+}\Lambda\left[\mathcal{P}_{-}\right]\right) \leq \mathsf{Tr}\left(\Lambda\left[\mathcal{P}_{+}\right]\right) \end{aligned}$$

and similarly for $Tr(Q_{-})$

Theorem 6.2. For any Hermitian $d \times d$ matrix *H* and any trace preserving positive linear map Λ acting on the Hilbert space of dimension *d* it holds that

$$\left\|\Lambda\left(H\right)\right\|_{1} \leq \|H\|_{1}$$

Proof.

$$\begin{split} \Lambda\left(H\right) &= Q_{+} - Q_{-}, \quad H = P_{+} - P_{-}, \\ \mathsf{Tr}\left(Q_{\pm}\right) &\leq \mathsf{Tr}\left(\Lambda\left[P_{\pm}\right]\right) \end{split}$$

Recalling that Λ is trace preserving, we further have

$$\operatorname{Tr}(Q_{+}+Q_{-}) \leq \operatorname{Tr}(P_{+}+P_{-})$$

Theorem 6.2. For any Hermitian $d \times d$ matrix *H* and any trace preserving positive linear map Λ acting on the Hilbert space of dimension *d* it holds that

$$\left\|\Lambda\left(H\right)\right\|_{1} \leq \|H\|_{1}$$

Proof.

$$\begin{split} \Lambda\left(H\right) &= Q_{+} - Q_{-}, \quad H = P_{+} - P_{-}, \\ \mathsf{Tr}\left(Q_{\pm}\right) &\leq \mathsf{Tr}\left(\Lambda\left[P_{\pm}\right]\right) \end{split}$$

Recalling that Λ is trace preserving, we further have

$$\mathrm{Tr}\left(Q_{+}+Q_{-}\right)\leq\mathrm{Tr}\left(P_{+}+P_{-}\right)$$

The proof is complete using the fact that

$$\|H\|_1 = \text{Tr}(P_+ + P_-), \ \|\Lambda(H)\|_1 = \text{Tr}(Q_+ + Q_-)$$

Proposition 6.5. For any unitary U it holds that

 $\left| \operatorname{Tr} \left(AU \right) \right| \le \|A\|_1$

Proposition 6.5. For any unitary U it holds that

 $\left| \operatorname{Tr} \left(AU \right) \right| \le \|A\|_1$

Proof. By the polar decomposition we have

$$\left|\operatorname{Tr}(AU)\right| = \left|\operatorname{Tr}\left(V\sqrt{A^{\dagger}A}U\right)\right| = \left|\operatorname{Tr}\left(\left[A^{\dagger}A\right]^{1/4}\left[A^{\dagger}A\right]^{1/4}UV\right)\right|.$$

Proposition 6.5. For any unitary U it holds that

 $\left| \operatorname{Tr} \left(AU \right) \right| \le \|A\|_1$

Proof. By the polar decomposition we have

$$\left| \operatorname{Tr} (AU) \right| = \left| \operatorname{Tr} \left(V \sqrt{A^{\dagger} A} U \right) \right| = \left| \operatorname{Tr} \left(\left[A^{\dagger} A \right]^{1/4} \left[A^{\dagger} A \right]^{1/4} UV \right) \right|.$$

Using the Cauchy-Schwarz inequality $\left| \operatorname{Tr} (X^{\dagger} Y) \right|^{2} \leq \operatorname{Tr} (X^{\dagger} X) \operatorname{Tr} (Y^{\dagger} Y)$ and setting

$$X = \left[A^{\dagger}A\right]^{1/4}, \quad Y = \left[A^{\dagger}A\right]^{1/4}UV$$

we obtain

Q.E.D.

$$|\operatorname{Tr}(AU)| \leq \sqrt{\operatorname{Tr}\sqrt{A^{\dagger}A}\operatorname{Tr}(V^{\dagger}U^{\dagger}\sqrt{A^{\dagger}A}UV)} = \operatorname{Tr}\sqrt{A^{\dagger}A} = ||A||_{1}.$$

• For two quantum states ρ and σ **fidelity** is defined as

$$F(\rho,\sigma) = \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma \sqrt{\rho}}$$

• For two quantum states ρ and σ fidelity is defined as

$$F(\rho,\sigma) = \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma \sqrt{\rho}}$$

• It holds that

$$1 - F(\rho, \sigma) \le D_t(\rho, \sigma) \le \sqrt{1 - F(\rho, \sigma)^2}$$

• For two quantum states ρ and σ fidelity is defined as

$$F(\rho,\sigma) = \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma \sqrt{\rho}}$$

· It holds that

$$1 - F(\rho, \sigma) \le D_t(\rho, \sigma) \le \sqrt{1 - F(\rho, \sigma)^2}$$

• It follows that $0 \le F(\rho, \sigma) \le 1$, and $F(\rho, \sigma) = 1$ if and only if $\rho = \sigma$

• For two quantum states ρ and σ fidelity is defined as

$$F(\rho,\sigma) = \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma \sqrt{\rho}}$$

· It holds that

$$1 - F(\rho, \sigma) \le D_t(\rho, \sigma) \le \sqrt{1 - F(\rho, \sigma)^2}$$

- It follows that 0 ≤ F(ρ, σ) ≤ 1, and F(ρ, σ) = 1 if and only if ρ = σ
- Let $|\psi\rangle = |\psi\rangle^{AB}$ and $|\phi\rangle = |\phi\rangle^{AB}$ be purifications $\rho = \rho^{B}$ and $\sigma = \sigma^{B}$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof. We can write any purification of ρ and σ as follows:

$$\begin{split} |\psi\rangle &= \left(U_A \otimes \sqrt{\rho} U_B\right) |m\rangle, \\ |\phi\rangle &= \left(V_A \otimes \sqrt{\sigma} V_B\right) |m\rangle \end{split}$$

with $d_A = d_B$, $|m\rangle = \sum_i |i\rangle |i\rangle$ and some unitaries U_A , U_B , V_A , and V_B .

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof. We can write any purification of ρ and σ as follows:

$$\begin{split} |\psi\rangle &= \left(U_A \otimes \sqrt{\rho} U_B\right) |m\rangle, \\ |\phi\rangle &= \left(V_A \otimes \sqrt{\sigma} V_B\right) |m\rangle \end{split}$$

with $d_A = d_B$, $|m\rangle = \sum_i |i\rangle |i\rangle$ and some unitaries U_A , U_B , V_A , and V_B . We obtain

$$|\langle \psi | \phi \rangle| = \left| \langle m | U_A^{\dagger} V_A \otimes U_B^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_B | m \rangle \right|.$$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof.

$$|\langle \psi | \phi
angle| = \left| \langle m | U_A^{\dagger} \, V_A \otimes U_B^{\dagger} \, \sqrt{
ho} \, \sqrt{\sigma} \, V_B | m
angle
ight|$$

Using the equality

$$|\langle m|A\otimes B|m
angle|=\operatorname{Tr}\left(A^{\dagger}B
ight)$$

we further obtain

$$|\langle \psi | \phi \rangle| = \left| \mathsf{Tr} \left(V_A^{\dagger} U_A U_B^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_B \right) \right|.$$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof.

$$|\langle \psi | \phi
angle| = \left| \mathsf{Tr} \left(V_A^{\dagger} U_A U_B^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_B
ight) \right|$$

Defining the unitary $U = V_B V_A^{\dagger} U_A U_B^{\dagger}$ we arrive at

$$|\langle \psi | \phi \rangle| = \left| \mathsf{Tr} \left(\sqrt{\rho} \, \sqrt{\sigma} \, U \right) \right|.$$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof.

$$\langle \psi | \phi \rangle | = \left| \mathsf{Tr} \left(V_A^{\dagger} U_A U_B^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_B \right) \right|$$

Defining the unitary $U = V_B V_A^{\dagger} U_A U_B^{\dagger}$ we arrive at

$$|\langle \psi | \phi \rangle| = \left| \mathsf{Tr} \left(\sqrt{\rho} \sqrt{\sigma} U \right) \right|.$$

Using Proposition 6.5., we see that

$$|\langle \psi | \phi \rangle| \le \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_1 = \operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} = F(\rho, \sigma).$$

Theorem 6.3. For any two states ρ and σ it holds that

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|,$$

where the maximum is taken over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of $\sigma.$

Proof.

$$|\langle \psi | \phi \rangle| = \left| \mathsf{Tr} \left(\sqrt{\rho} \sqrt{\sigma} V_B V_A^{\dagger} U_A U_B^{\dagger} \right) \right| \le \mathsf{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}} = F(\rho, \sigma)$$

Equality can be attained by choosing a unitary *V* such that $M = \sqrt{MM^{\dagger}}V$, where $M = \sqrt{\rho}\sqrt{\sigma}$. Setting $V_B = V^{\dagger}$ and $U_B = U_A = V_A = \mathbb{1}$ the equality is attained. Q.E.D.

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

 $F\left(\Lambda\left[\rho\right],\Lambda\left[\sigma\right]\right)\geq F\left(\rho,\sigma\right)$

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$F(\Lambda[\rho], \Lambda[\sigma]) \ge F(\rho, \sigma)$$

Proof.

• Every quantum operation Λ on the system *B* can be written as

$$\Lambda\left[\rho^{B}\right] = \mathrm{Tr}_{E}\left[U_{BE}\left(\rho^{B}\otimes\left|0\right\rangle\left\langle 0\right|^{E}\right)U_{BE}^{\dagger}\right]$$

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

$$F(\Lambda[\rho], \Lambda[\sigma]) \ge F(\rho, \sigma)$$

Proof.

• Every quantum operation Λ on the system *B* can be written as

$$\boldsymbol{\Lambda}\left[\boldsymbol{\rho}^{B}\right] = \mathrm{Tr}_{E}\left[\boldsymbol{U}_{BE}\left(\boldsymbol{\rho}^{B}\otimes|\mathbf{0}\rangle\langle\mathbf{0}|^{E}\right)\boldsymbol{U}_{BE}^{\dagger}\right]$$

• Let $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$ be purifications of ρ^{B} and σ^{B} , such that $F(\rho, \sigma) = |\langle \psi | \phi \rangle|$

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

 $F(\Lambda[\rho], \Lambda[\sigma]) \ge F(\rho, \sigma)$

Proof.

Every quantum operation Λ on the system B can be written as

$$\Lambda\left[\rho^{B}\right] = \mathrm{Tr}_{E}\left[U_{BE}\left(\rho^{B}\otimes\left|0\right\rangle\left\langle 0\right|^{E}\right)U_{BE}^{\dagger}\right]$$

- Let $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$ be purifications of ρ^{B} and σ^{B} , such that $F(\rho, \sigma) = |\langle \psi | \phi \rangle|$
- $1 \otimes U_{BE} |\psi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\rho^{B}]$ and $1 \otimes U_{BE} |\phi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\sigma^{B}]$

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

 $F(\Lambda[\rho], \Lambda[\sigma]) \ge F(\rho, \sigma)$

Proof.

• $1 \otimes U_{BE} |\psi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\rho^{B}]$ and $1 \otimes U_{BE} |\phi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\sigma^{B}]$

Theorem 6.4. For any two quantum states ρ and σ and any quantum operation Λ it holds that

 $F(\Lambda[\rho], \Lambda[\sigma]) \ge F(\rho, \sigma)$

Proof.

- $1 \otimes U_{BE} |\psi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\rho^{B}]$ and $1 \otimes U_{BE} |\phi\rangle^{AB} |0\rangle^{E}$ is a purification of $\Lambda[\sigma^{B}]$
- Using Theorem 6.3 we obtain

 $F(\Lambda[\rho], \Lambda[\sigma]) \ge \left| \langle \psi | \langle 0 | \mathbb{1} \otimes U_{BE}^{\dagger} U_{BE} | \phi \rangle | 0 \rangle \right| = |\langle \psi | \phi \rangle| = F(\rho, \sigma)$ Q.E.D.

• Bure distance:

$$\mathsf{D}_\mathsf{b}(
ho,\sigma)=\sqrt{\mathsf{2}-\mathsf{2F}(
ho,\sigma)}$$

• Bure distance:

$$D_b(
ho,\sigma) = \sqrt{2 - 2F(
ho,\sigma)}$$

• $D_b(\rho, \sigma) \ge 0$ with equality if and only if $\rho = \sigma$

Fidelity

• Bure distance:

$$D_b(\rho,\sigma) = \sqrt{2 - 2F(\rho,\sigma)}$$

- $D_b(\rho, \sigma) \ge 0$ with equality if and only if $\rho = \sigma$
- D_b fulfills the data-processing inequality

$$D_b(\Lambda[\rho], \Lambda[\sigma]) \le D_b(\rho, \sigma)$$

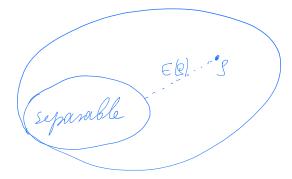
for any quantum operation Λ

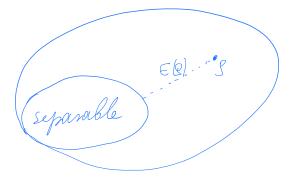
Outline

Homework problems

2 Entanglement measures

Distance-based entanglement measures

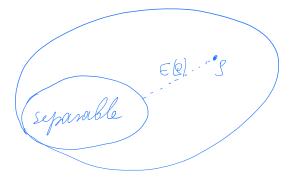




For a distance function $D(\rho, \sigma)$ define

$$\mathsf{E}(\rho) = \inf_{\sigma \in \mathcal{S}} \mathsf{D}(\rho, \sigma)$$

with infimum over separable states ${\cal S}$



E is an entanglement measure if:

1 $D(\rho, \sigma) \ge 0$ with equality for $\rho = \sigma$

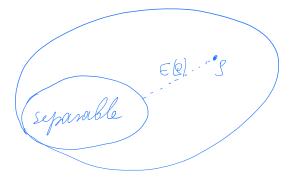
ERL

E is an entanglement measure if:

- 1 $D(\rho, \sigma) \ge 0$ with equality for $\rho = \sigma$
- **2** *D* fulfills the data-processing inequality:

$$D(\Lambda[\rho], \Lambda[\sigma]) \le D(\rho, \sigma)$$

for any quantum operation Λ



Exercise: prove that

$$\mathsf{E}(
ho) = \inf_{\sigma \in \mathcal{S}} \mathsf{D}(
ho, \sigma)$$

is an entanglement measure

Proof that $E(\rho) = \inf_{\sigma \in S} D(\rho, \sigma)$ does not increase under LOCC:

 $E(\Lambda_{\rm LOCC}[\rho]) \leq E(\rho)$

Proof that $E(\rho) = \inf_{\sigma \in S} D(\rho, \sigma)$ does not increase under LOCC: $E(\Lambda_{LOCC}[\rho]) \le E(\rho)$

• Let σ be a separable state such that $E(\rho) = D(\rho, \sigma)$

Proof that $E(\rho) = \inf_{\sigma \in S} D(\rho, \sigma)$ does not increase under LOCC: $E(\Lambda_{LOCC}[\rho]) \le E(\rho)$

- Let σ be a separable state such that $E(\rho) = D(\rho, \sigma)$
- Note that $\Lambda_{\text{LOCC}}[\sigma]$ is separable

Proof that $E(\rho) = \inf_{\sigma \in S} D(\rho, \sigma)$ does not increase under LOCC: $E(\Lambda_{LOCC}[\rho]) \le E(\rho)$

- Let σ be a separable state such that $E(\rho) = D(\rho, \sigma)$
- Note that $\Lambda_{\text{LOCC}}[\sigma]$ is separable
- We have

 $E (\Lambda_{\text{LOCC}}[\rho]) = \min_{\mu \in S} D (\Lambda_{\text{LOCC}}[\rho], \mu) \le D (\Lambda_{\text{LOCC}}[\rho], \Lambda_{\text{LOCC}}[\sigma])$ $\le D(\rho, \sigma) = E(\rho)$

Proof that $E(\rho) = \inf_{\sigma \in S} D(\rho, \sigma)$ does not increase under LOCC: $E(\Lambda_{LOCC}[\rho]) \le E(\rho)$

- Let σ be a separable state such that $E(\rho) = D(\rho, \sigma)$
- Note that $\Lambda_{\text{LOCC}}[\sigma]$ is separable
- We have

$$E (\Lambda_{\text{LOCC}}[\rho]) = \min_{\mu \in S} D (\Lambda_{\text{LOCC}}[\rho], \mu) \le D (\Lambda_{\text{LOCC}}[\rho], \Lambda_{\text{LOCC}}[\sigma])$$
$$\le D(\rho, \sigma) = E(\rho)$$

• Proof holds also if Λ_{LOCC} is replaced by separable operations