Advanced quantum information:
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3rd class
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Advanced quantum information

Every Wednesday 15:15 - 17:00

® Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

¢ 1. Homework sheet to be submitted via email by 22. March
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Outline

@ Entanglement detection

@ Applications of entanglement
Quantum teleportation
Superdense coding

@® Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences
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Outline

@ Entanglement detection
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Partial transposition

Partial transposition on Bob’s subsystem:

Ts
pTe = {Z Cikt 1)l ® |k></|]

ij,k,l
= > ciulivil® (k"

ikl

= > ciuliXil® lIxk]

ij.k,1
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Partial transposition

Applying partial transposition to a separable state:

puty = Zp,|w,><w,|®(|¢,><¢| Zp, Wil @167 |
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Partial transposition

Applying partial transposition to a separable state:

puty = Zp,|w,><w,|®(|¢,><¢| Zp, Wil @167 |

= PPT criterion: if p8 is not positive, p must be entangled
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Partial transposition
Example. For ) = cosa |00) + sin@|11) we have

2

Cos” « 0 O cosasina
0 0 0 0 XY
cosasina 0 O sin a
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Partial transposition

Example. For ) = cosa |00) + sin@|11) we have

cos? a 0 O cosasina
0 0 0 0 XY
cosasina 0 O sin a
cos? a 0 0 0
T Xt yT 0 0 cosasin @ 0
pA= T = .
(YT) zT 0 cos @ sin & 0 0

N

0 0 0 sin“ a
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Partial transposition

Example. For ) = cosa |00) + sin@|11) we have

cos? a 0 O cosasina
0 0 0 0 XY
/) — |¢/><L01 - () () () () - ( \/T ZZ )
cosasina 0 O sin a
cos? a 0 0 0
T Xt yT 0 0 cosasina 0
pA= T = .
(YT) ydl 0 cosasina 0 0
0 0 0 sin o

2 2

Eigenvalues of p™: cos? @, sin® @, +| cos a sin
= |y) is entangled for all & # n3
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Positive and completely positive maps

Positive map: linear map A acting on matrices such that A(p) is
positive semidefinite for any positive semidefinite matrix p
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Positive and completely positive maps

Positive map: linear map A acting on matrices such that A(p) is
positive semidefinite for any positive semidefinite matrix p

For a bipartite density matrix o8 we define

1oAp*) =1® /\(Z i )l © |k></|] = > cilixji® Ak

ij.k,l ij.k,!
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Positive and completely positive maps

Positive map: linear map A acting on matrices such that A(p) is
positive semidefinite for any positive semidefinite matrix p

For a bipartite density matrix o8 we define

1oAp*) =1® /\(Z i )l © |k></|] = > cilixji® Ak

ij.k,l ij.k,!

Completely positive (CP) map: a positive map A such that
1 ® A(0"B) is positive for any positive semidefinite matrix p*8 in the
extended Hilbert space of any dimension
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Positive and completely positive maps

Positive map: linear map A acting on matrices such that A(p) is
positive semidefinite for any positive semidefinite matrix p

For a bipartite density matrix o8 we define

1oAp*) =1® /\(Z i )l © |k></|] = > cilixji® Ak

ij.k,l ij.k,!

Completely positive (CP) map: a positive map A such that
1 ® A(0"B) is positive for any positive semidefinite matrix p*8 in the
extended Hilbert space of any dimension

Not every positive map is CP (e.g. transpose)
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Choi—Jamiotkowski isomorphism

Choi matrix of a linear map A:

1
My = (Lo A)[07%0F1 = = > i ® Al
if
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Choi—Jamiotkowski isomorphism

Choi matrix of a linear map A:

1
My = (Lo A)[07%0F1 = = > i ® Al
if

Choi-Jamiotkowski isomorphism:

® Ais a positive map if and only if Mx is an entanglement
witness

e For any entanglement witness W8 there exists a positive
map A such that WAB = M,

* A is completely positive if and only if Mx is positive
semidefinite
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PPT criterion for two qubits

Proposition 3.1. For ds = dg = 2 a state p”B is separable if and
only if p'® is positive semidefinite.
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PPT criterion for two qubits

Proposition 3.1. For ds = dg = 2 a state p”B is separable if and
only if p'® is positive semidefinite.

Proof. For any entangled state p”Z there exists an entanglement
witness WB such that (see Theorem 3.1.)

Tr [WABp"8] < 0.
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PPT criterion for two qubits

Proposition 3.1. For ds = dg = 2 a state p”B is separable if and
only if p'® is positive semidefinite.

Proof. For any entangled state p”Z there exists an entanglement
witness WB such that (see Theorem 3.1.)

Tr [WABp"8] < 0.

With the Choi-Jamiotkowski isomorphism, there also exists a
positive map A such that

Tr[(1@Al0T)®T])p*F] < 0.
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PPT criterion for two qubits

There exists a positive map A such that

Tr[(1@Al0T)®T])p*F] < 0.
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PPT criterion for two qubits

There exists a positive map A such that

Tr[(1@Al0T)®T])p*F] < 0.

Every positive qubit map can be decomposed as
T
o) = AF(p) + [A" (o)

with CP maps AP

11/31



PPT criterion for two qubits

There exists a positive map A such that

Tr[(1@Al0T)®T])p*F] < 0.

Thus,
0> Tr[(1@AldT)OH)) o] = Tr[(L e ATP |0+ ) (& 1) p* |
e [(]1 & AP o Hy(@ )" pAB]
= Tr[X1p"®] + Tr[X;2p""|

with positive matrices X; = 1 ® ASP [®T)(dF|.
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PPT criterion for two qubits

In summary,
0> Tr[X:1p"8] + Tr[X;20"®]

with positive matrices X; = 1 ® AS? [®T)(d .
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PPT criterion for two qubits

In summary,
0> Tr[X:1p"8] + Tr[X;20"®]

with positive matrices X; = 1 ® AS? [®T)(d .

Using
Tr [XZTBpAB] =Tr [XngB]
we obtain
0>Tr [X1pAB] + Tr [XngB] >Tr [XngB]
Since X; is positive, p' must have negative eigenvalues.

Q.E.D.
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PPT criterion for two qubits

For larger dimensions:
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PPT criterion for two qubits

For larger dimensions:

Theorem 3.2. For dadp < 6 a state p”? is separable if and only
if p'8 is positive. For all dadg > 6 there exist entangled states
which have positive partial transpose.
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PPT criterion for two qubits

Exercise: For the two-qubit state
p =PpIOTHOT|+ (1 - p)[®~ NP7

with [®*) = (|00) +[11))/ V2 and 0 < p < 1 determine the values
of p for which the state is entangled.
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PPT criterion for two qubits
Solution: Consider the density matrix

100 1 1 00 -1
" ploooo| 1-plo oo o
P=%loo0o0o0|" 2] 0 00 o
100 1 100 1
1 00 2p-1
1 o o0 o
“2] 0o 00 o
2p-1 00 1
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PPT criterion for two qubits
Solution: Consider the density matrix

100 1 1 00 -1
ploooo]| 1-pl o 00 o
P=%loo0o0o0|" 2] 0 00 o
100 1 100 1
1 00 2p-1
1l o 00 o0
~2] o 00 O
o0-1 0 0 1
1 0 0 o
n_1lo 0o 2-10
P"=%l0 2p-1 0 0
0o o0 0 1
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PPT criterion for two qubits
Solution: Consider the density matrix

100 1 1 00 -1
ploooo]| 1-pl o 00 o
P=%loo0o0o0|" 2] 0 00 o
100 1 100 1
1 00 2p-1
1l o 00 o0
~2] o 00 O
o0-1 0 0 1
1 0 0 o
n_1lo 0o 2-10
P"=%l0 2p-1 0 0
0o o0 0 1

Eigenvalues of p™ : 1, 1, 1(1-2p), 3(2p - 1) = p is entangled
forp # 1
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Outline

@ Applications of entanglement
Quantum teleportation
Superdense coding
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Outline

@ Entanglement detection
@ Applications of entanglement

Quantum teleportation

@® Entanglement distillation and dilution
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CNOT gate

Controlled NOT gate (CNOT): A unitary transformation acting on

two qubits (control and target) as follows

Before After
Control | Target | Control | Target
10) 10) 10) 0)
10) 1) 10) 1)
1) 10) 1) 1)
1) 1) 1) 0)
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Hadamard gate

Hadamard gate is a unitary transformation on one qubit acting as
follows

”
0) - —(|0) + |1
10) \/§(|>|>)

1
1) > —(10)y - |1
1) \/§(|>|>)
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Hadamard gate

Hadamard gate is a unitary transformation on one qubit acting as
follows

”
0) - —(|0) + |1
10) \/§(|>|>)

1
EUO) —11)

Exercise: find the matrix form of the Hadamard gate

1) —
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Hadamard gate

Hadamard gate is a unitary transformation on one qubit acting as
follows

”
0) - —(|0) + |1
10) \/§(|>|>)

1
EUO) —11)

Exercise: find the matrix form of the Hadamard gate

sl

1) —

Solution:
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Quantum teleportation

® Suppose Alice and Bob share a Bell state |d>+>AB
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Quantum teleportation

A /)

* Suppose Alice and Bob share a Bell state |¢+)AB

* Additionally, Alice has a qubit A’ in the state
W = col0) + ¢111)
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Quantum teleportation

* Suppose Alice and Bob share a Bell state |<1>+)AB
* Additionally, Alice has a qubit A’ in the state
W) = col0) + c111)

® Alice can send the qubit A’ to Bob by using quantum
teleportation
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Quantum teleportation
Total initial state of Alice and Bob:
a1
V2
1

=2 [co10) (100) + [11)) + ¢1 1) (100) 4 [11))]

(@48 = (20 10 + o1 1)) © —= 100y + [11)8)
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Quantum teleportation
Total initial state of Alice and Bob:
a1
V2
1

=2 [co10) (100) + [11)) + ¢1 1) (100) 4 [11))]

(@48 = (20 10 + o1 1)) © —= 100y + [11)8)

Alice performs a CNOT gate on her qubits A’A:

|®") = % [co10) (]00) 4 111)) 4+ ¢4 [1) (]10) +[01))]

21/31



Quantum teleportation

|®") = % [co10) (]00) 4 111)) 4+ ¢4 [1) (]10) +[01))]

Alice applies a Hadamard gate to A’:

1
|®7) = > [co (10) +11)) (100) + [11)) + ¢4 (10) = 1)) (110) + [01))]

1
=3 [100) (co [0) + c111)) + 101} (co [1) + ¢1[0))
+ 110) (o 10) = c1 1)) + [11) (co [1) = €1 10))]
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Quantum teleportation

]
®7) = > [100) (co10) + ¢111)) +101) (co [1) + ¢110))
+ 110) (o 0) — ¢t 1)) + 1) (co 1) — ¢110))]

Alice measures A’ and A in the computational basis {|0), [1)}:

Alice’s outcome State of B
00 Ccol0) + ¢y 1)
01 Co 1) + ¢110)
10 Col0) —cq|1)
11 Col1) — ¢4 10)
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Quantum teleportation

Alice’s outcome State of B
00 Col0) + ¢4 1)
01 Co 1) + ¢4 10)
10 Col0) —c1]1)
11 Col1) — ¢110)

Bob performs a correction on his qubit depending on Alice’s mea-

surement:
Alice’s State of B Correction State of B after
outcome correction
00 Col0) +c1|1) 1 Ccol0) + ¢y 1)
01 Col1) + ¢110) Tx Col0) +c1 1)
10 Col0) —c1 (1) 0z Col0) + ¢1[1)
11 Col1) —c110) ioy Col0) +c1 1)
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Quantum teleportation

® Protocol does not depend on the state to be teleported
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Quantum teleportation

® Protocol does not depend on the state to be teleported

® Bell state |<I>+)AB is destroyed in this procedure, thus
teleportation of one qubit consumes one Bell state
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Quantum teleportation

For d > 2:
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Quantum teleportation

4

/,‘\{ A R TP ,) (J‘/”g
RN [ Y /
n - 70
Ay — )
[ \_ N /
I T
\ |
\ [ ¥/ {
|
E '\'77/ ‘&\
PErEE— ‘i
foer 1o 1] ]
N ( L~

For d > 2:

e if d = 2" for some n € N: A’ can be treated as n-qubit system:

A =AA]. . A
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Quantum teleportation

A . /
/%QJ% ) 20
PR -
J//( N\ \ 'y s \‘
I /"\ _ ;y \
\\‘ . T),/’
N \
[ |/ |
U4 / ;‘
\___ |
| 4
‘‘‘‘‘‘ ’ p / “T i
| N | | /
l > oo L

For d > 2:
e if d = 2" for some n € N: A’ can be treated as n-qubit system:
A" =AlA..A]

* Teleportation of A” by teleporting each of the qubits A/
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Quantum teleportation

‘L;(j{ 7 ”f“‘! | S0
/: ( \: | ‘;’ e / m\
\/y \ T :\; )/‘
—
\ AR
” \
- \
‘‘‘‘‘‘‘ (Ao 1] |
\\ ‘
L > N _ J

For d > 2:
e if d = 2" for some n € N: A’ can be treated as n-qubit system:

A"=AlA.. A]
* Teleportation of A” by teleporting each of the qubits A/
® Consumes n = log, d Bell states
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Quantum teleportation

PN ' )
i 7 p
|- N
\\\ ( «‘7L/ “
- |
) 7;7‘;A77/ - 4T | l
| ~\ ‘; ; U ]
l, — % K/ (/ —

Ford > 2:
e if d # 2" for any n € N, define n = [log, d]
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Quantum teleportation

Al AEN JA ﬁ/’g
/}'TR\ ‘ ‘,’ /,\
/A ,}, 7N
‘// —(/) )
| \_ AN /
I T
\ /] D \
\ [ |/ |
\\ ‘;\ { | ‘
N 1
o= L — v S
oo 1o | ]
| N , L

Ford > 2:
e if d # 2" for any n € N, define n = [log, d]
o [ =32 " ¢liyA with ¢; = 0fori > d
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Quantum teleportation

/}:ﬁ%‘fi ,b )(”
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Ford > 2:
o if d # 2" for any n € N, define n = [log, d]
o [ =32 " ¢liyA with ¢; = 0fori > d
® A’ can be treated as n-qubit system: A” = AfA]... A}
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Quantum teleportation

w, Y
/,L,':C{ (B4 "/‘J"' ~ N\ / /‘()
) T 7 7
(8% ~1))
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For d > 2:
o if d # 2" for any n € N, define n = [log, d]
o [ =32 " ¢liyA with ¢; = 0fori > d
® A’ can be treated as n-qubit system: A’ = AJA] ... A;
* Teleportation of A’ by teleporting each of the qubits A/
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Quantum teleportation

y y,
e A [Pob
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For d > 2:
o if d # 2" for any n € N, define n = [log, d]
o [ =32 " ¢liyA with ¢; = 0fori > d
® A’ can be treated as n-qubit system: A” = AfA]... A}
* Teleportation of A’ by teleporting each of the qubits A/
e Consumes n = [log, d] Bell states
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Quantum teleportation

¢ Quantum teleportation can also be applied to teleport a part
of Alice’s subsystem
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Quantum teleportation

¢ Quantum teleportation can also be applied to teleport a part
of Alice’s subsystem

* Proposition 4.1. For a state
k—1
WP = VI e1)”
i=0

with k nonzero Schmidt coefficients the teleportation of D can
be done by consuming [log, k| Bell states.
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Outline

@ Entanglement detection

@ Applications of entanglement

Superdense coding

@® Entanglement distillation and dilution
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Superdense coding

Y
May

e Suppose that Alice and Bob share two qubits in the state |®T)

e They can use |®1) to communicate two bits of information
with a single qubit via the following procedure

26/31



Superdense coding

/“ (274
‘/)],
( N N / N
( )
\ { y
|
Ne

)0 ) 1%,

I
10X, S

5

1. Alice applies a unitary on her qubit, depending on which two bits
she wants to send to Bob
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Superdense coding

Resulting states are

00:[0F) - (1@1)|dt) =),

01:|dT) — (az®1)%(|oo>+|11>) = %(|oo>—|11>) =7y,
10: |0 — (ax®ﬂ)%(|00)+|11)) = %(|10>+|01)) = vy,
11: 10Ty > (icry®]l)%(|00>+|11)) = %(—|10>+|01>) =[V7).
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Superdense coding

/“ (274
‘/)],
( N N / N
( )
\ { y
|
Ne

)0 ) 1%,

I
10X, S

5

2. Alice sends her qubit to Bob, who is now in possession of one of
the four Bell states
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Superdense coding

IV
MAaw

3. Bob applies a von Neumann measurement in the maximally en-
tangled basis. From his outcome, he can directly read off the two
bits encoded by Alice.
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Superdense coding

/\ﬁi w §u¥/’ o
Wk
/ D ‘\ / 7))
/ /
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/ Y )

Two bits is the maximal amount of classical information that one
qubit can carry
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Outline

@® Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences
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Outline

@ Entanglement detection

@ Applications of entanglement

@® Entanglement distillation and dilution
Shannon and von Neumann entropy
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Shannon and von Neumann entropy

Consider an integer random variable x with probability distribution
p(x). A sequence of independent and identically distributed
variables x; has probability distribution

p(xt,... Xm) = p(x1)p(x2) - .. p(Xim)-
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Shannon and von Neumann entropy

Consider an integer random variable x with probability distribution
p(x). A sequence of independent and identically distributed
variables x; has probability distribution

p(xt,... Xm) = p(x1)p(x2) - .. p(Xim)-

Shannon entropy:

H(p(x Z p(x) loga p(x
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Shannon and von Neumann entropy

Consider an integer random variable x with probability distribution
p(x). A sequence of independent and identically distributed
variables x; has probability distribution

p(xt,... Xm) = p(x1)p(x2) - .. p(Xim)-

Shannon entropy:

H(p(x Z p(x) loga p(x

Von Neumann entropy of a quantum state p with eigenvalues A;:

S(p) = ~Trlologap] = - ) Ailog 4
i
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Outline

@ Entanglement detection

@ Applications of entanglement

@® Entanglement distillation and dilution

Typical sequences
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)

® For large m certain sequences will be suppressed, they are
atypical (e.g. 1,1,1,...,1,1)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3
® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)

® For large m certain sequences will be suppressed, they are
atypical (e.g. 1,1,1,...,1,1)

® Typical sequences: sequences that are most likely to appear
for large m
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Exercise: For e = 0.01 and m = 10 is the sequence 1,1,...,1,1
e-typical?
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Solution:
* For m=10we have p(1,1,...,1,1) = 5 * 2x 107
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3
e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

o-m(H(p(x))+e) < P(X1s. .. Xm) < o—m(H(p(x))-e€)

Solution:

* For m=10we have p(1,1,...,1,1) = 5 * 2x 107

® For e = 0.01 we get 2-M(H(P(X))x€) ~ 2 x 103

31/31



Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Solution:

* For m=10we have p(1,1,...,1,1) = 5 * 2x 107

® For e = 0.01 we get 2-M(H(P(X))x€) ~ 2 x 103

* = 1,1,...,1,1is not e-typical
31/31
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