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Advanced quantum information

• Every Wednesday 15:15 – 17:00

• Literature:
• Nielsen and Chuang, Quantum Computation and Quantum

Information, Cambridge University Press (2012)
• Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,

865 (2009)

• Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

• 1. Homework sheet to be submitted via email by 22. March

2 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

3 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

4 / 31



Partial transposition

Partial transposition on Bob’s subsystem:

ρTB =

∑
i,j,k ,l

cijkl |i〉〈j| ⊗ |k 〉〈l|


TB

=
∑
i,j,k ,l

cijkl |i〉〈j| ⊗ (|k 〉〈l|)T

=
∑
i,j,k ,l

cijkl |i〉〈j| ⊗ |l〉〈k |
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Partial transposition

Applying partial transposition to a separable state:

ρTB
sep =

∑
i

pi |ψi〉〈ψi | ⊗ (|φi〉〈φi |)
T =

∑
i

pi |ψi〉〈ψi | ⊗ |φ
∗
i 〉〈φ

∗
i |

⇒ PPT criterion: if ρTB is not positive, ρ must be entangled
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Partial transposition
Example. For |ψ〉 = cosα |00〉+ sinα |11〉 we have

ρ = |ψ〉〈ψ| =


cos2 α 0 0 cosα sinα

0 0 0 0
0 0 0 0

cosα sinα 0 0 sin2 α

 =

(
X Y
Y† Z

)

ρTA =

 XT YT(
Y†

)T
ZT

 =


cos2 α 0 0 0

0 0 cosα sinα 0
0 cosα sinα 0 0
0 0 0 sin2 α


Eigenvalues of ρTA : cos2 α, sin2 α, ±| cosα sinα|
⇒ |ψ〉 is entangled for all α , n π

2
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Positive and completely positive maps

Positive map: linear map Λ acting on matrices such that Λ(ρ) is
positive semidefinite for any positive semidefinite matrix ρ

For a bipartite density matrix ρAB we define

1 ⊗ Λ(ρAB) = 1 ⊗ Λ

∑
i,j,k ,l

cijkl |i〉〈j| ⊗ |k 〉〈l|

 =
∑
i,j,k ,l

cijkl |i〉〈j| ⊗ Λ(|k 〉〈l|)

Completely positive (CP) map: a positive map Λ such that
1 ⊗ Λ(ρAB) is positive for any positive semidefinite matrix ρAB in the
extended Hilbert space of any dimension

Not every positive map is CP (e.g. transpose)
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Choi–Jamiołkowski isomorphism

Choi matrix of a linear map Λ:

MΛ = (1 ⊗ Λ) |Φ+
d 〉〈Φ

+
d | =

1
d

∑
i,j

|i〉〈j| ⊗ Λ (|i〉〈j|)

Choi-Jamiołkowski isomorphism:
• Λ is a positive map if and only if MΛ is an entanglement

witness
• For any entanglement witness WAB there exists a positive

map Λ such that WAB = MΛ

• Λ is completely positive if and only if MΛ is positive
semidefinite
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PPT criterion for two qubits

Proposition 3.1. For dA = dB = 2 a state ρAB is separable if and
only if ρTB is positive semidefinite.

Proof. For any entangled state ρAB there exists an entanglement
witness WAB such that (see Theorem 3.1.)

Tr
[
WABρAB

]
< 0.

With the Choi-Jamiołkowski isomorphism, there also exists a
positive map Λ such that

Tr
[(
1 ⊗ Λ |Φ+〉〈Φ+|

)
ρAB

]
< 0.
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PPT criterion for two qubits

There exists a positive map Λ such that

Tr
[(
1 ⊗ Λ |Φ+〉〈Φ+|

)
ρAB

]
< 0.
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PPT criterion for two qubits

There exists a positive map Λ such that

Tr
[(
1 ⊗ Λ |Φ+〉〈Φ+|

)
ρAB

]
< 0.

Every positive qubit map can be decomposed as

Λ(ρ) = ΛCP
1 (ρ) +

[
ΛCP

2 (ρ)
]T

with CP maps ΛCP
i .
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PPT criterion for two qubits

There exists a positive map Λ such that

Tr
[(
1 ⊗ Λ |Φ+〉〈Φ+|

)
ρAB

]
< 0.

Thus,

0 > Tr
[(
1 ⊗ Λ |Φ+〉〈Φ+|

)
ρAB

]
= Tr

[(
1 ⊗ ΛCP

1 |Φ
+〉〈Φ+|

)
ρAB

]
+ Tr

[(
1 ⊗ ΛCP

2 |Φ
+〉〈Φ+|

)TB
ρAB

]
= Tr

[
X1ρ

AB
]

+ Tr
[
XTB

2 ρAB
]

with positive matrices Xi = 1 ⊗ ΛCP
i |Φ

+〉〈Φ+|.
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PPT criterion for two qubits

In summary,

0 > Tr
[
X1ρ

AB
]

+ Tr
[
XTB

2 ρAB
]

with positive matrices Xi = 1 ⊗ ΛCP
i |Φ

+〉〈Φ+|.

Using
Tr

[
XTB

2 ρAB
]

= Tr
[
X2ρ

TB
]

we obtain

0 > Tr
[
X1ρ

AB
]

+ Tr
[
X2ρ

TB
]
≥ Tr

[
X2ρ

TB
]

Since X2 is positive, ρTB must have negative eigenvalues.
Q.E.D.
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PPT criterion for two qubits

For larger dimensions:

Theorem 3.2. For dA dB ≤ 6 a state ρAB is separable if and only
if ρTB is positive. For all dA dB > 6 there exist entangled states
which have positive partial transpose.
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PPT criterion for two qubits

Exercise: For the two-qubit state

ρ = p |Φ+〉〈Φ+|+ (1 − p) |Φ−〉〈Φ−|

with |Φ±〉 = (|00〉 ± |11〉)/
√

2 and 0 ≤ p ≤ 1 determine the values
of p for which the state is entangled.
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PPT criterion for two qubits
Solution: Consider the density matrix

ρ =
p
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 +
1 − p

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


=

1
2


1 0 0 2p − 1
0 0 0 0
0 0 0 0

2p − 1 0 0 1



ρTA =
1
2


1 0 0 0
0 0 2p − 1 0
0 2p − 1 0 0
0 0 0 1


Eigenvalues of ρTA : 1

2 , 1
2 , 1

2 (1 − 2p), 1
2 (2p − 1)⇒ ρ is entangled

for p , 1
2

15 / 31



PPT criterion for two qubits
Solution: Consider the density matrix

ρ =
p
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 +
1 − p

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


=

1
2


1 0 0 2p − 1
0 0 0 0
0 0 0 0

2p − 1 0 0 1



ρTA =
1
2


1 0 0 0
0 0 2p − 1 0
0 2p − 1 0 0
0 0 0 1



Eigenvalues of ρTA : 1
2 , 1

2 , 1
2 (1 − 2p), 1

2 (2p − 1)⇒ ρ is entangled
for p , 1

2

15 / 31



PPT criterion for two qubits
Solution: Consider the density matrix

ρ =
p
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 +
1 − p

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


=

1
2


1 0 0 2p − 1
0 0 0 0
0 0 0 0

2p − 1 0 0 1



ρTA =
1
2


1 0 0 0
0 0 2p − 1 0
0 2p − 1 0 0
0 0 0 1


Eigenvalues of ρTA : 1

2 , 1
2 , 1

2 (1 − 2p), 1
2 (2p − 1)⇒ ρ is entangled

for p , 1
2

15 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

16 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

17 / 31



CNOT gate

Controlled NOT gate (CNOT): A unitary transformation acting on
two qubits (control and target) as follows

Before After
Control Target Control Target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉
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Hadamard gate

Hadamard gate is a unitary transformation on one qubit acting as
follows

|0〉 →
1
√

2
(|0〉+ |1〉)

|1〉 →
1
√

2
(|0〉 − |1〉)

Exercise: find the matrix form of the Hadamard gate

Solution:

H =
1
√

2

(
1 1
1 −1

)
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Quantum teleportation

• Suppose Alice and Bob share a Bell state |Φ+〉
AB

• Additionally, Alice has a qubit A ′ in the state
|ψ〉A

′

= c0 |0〉+ c1 |1〉

• Alice can send the qubit A ′ to Bob by using quantum
teleportation
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Quantum teleportation

Total initial state of Alice and Bob:

|Φ〉A
′AB =

(
c0 |0〉A

′

+ c1 |1〉A
′
)
⊗

1
√

2

(
|00〉AB + |11〉AB

)
=

1
√

2
[c0 |0〉 (|00〉+ |11〉) + c1 |1〉 (|00〉+ |11〉)]
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Quantum teleportation

|Φ′〉 =
1
√

2
[c0 |0〉 (|00〉+ |11〉) + c1 |1〉 (|10〉+ |01〉)]

Alice applies a Hadamard gate to A ′:

|Φ′′〉 =
1
2

[c0 (|0〉+ |1〉) (|00〉+ |11〉) + c1 (|0〉 − |1〉) (|10〉+ |01〉)]

=
1
2

[|00〉 (c0 |0〉+ c1 |1〉) + |01〉 (c0 |1〉+ c1 |0〉)

+ |10〉 (c0 |0〉 − c1 |1〉) + |11〉 (c0 |1〉 − c1 |0〉)]
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Quantum teleportation

|Φ′′〉 =
1
2

[|00〉 (c0 |0〉+ c1 |1〉) + |01〉 (c0 |1〉+ c1 |0〉)

+ |10〉 (c0 |0〉 − c1 |1〉) + |11〉 (c0 |1〉 − c1 |0〉)]

Alice measures A ′ and A in the computational basis {|0〉 , |1〉}:

Alice’s outcome State of B
00 c0 |0〉+ c1 |1〉
01 c0 |1〉+ c1 |0〉
10 c0 |0〉 − c1 |1〉
11 c0 |1〉 − c1 |0〉
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Quantum teleportation

Alice’s outcome State of B
00 c0 |0〉+ c1 |1〉
01 c0 |1〉+ c1 |0〉
10 c0 |0〉 − c1 |1〉
11 c0 |1〉 − c1 |0〉

Bob performs a correction on his qubit depending on Alice’s mea-
surement:

Alice’s
outcome

State of B Correction State of B after
correction

00 c0 |0〉+ c1 |1〉 1 c0 |0〉+ c1 |1〉
01 c0 |1〉+ c1 |0〉 σx c0 |0〉+ c1 |1〉
10 c0 |0〉 − c1 |1〉 σz c0 |0〉+ c1 |1〉
11 c0 |1〉 − c1 |0〉 iσy c0 |0〉+ c1 |1〉
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Quantum teleportation

• Protocol does not depend on the state to be teleported

• Bell state |Φ+〉
AB is destroyed in this procedure, thus

teleportation of one qubit consumes one Bell state
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Quantum teleportation

For d > 2:
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Quantum teleportation

For d > 2:
• if d = 2n for some n ∈ N: A ′ can be treated as n-qubit system:

A ′ = A ′1A ′2 . . .A
′
n
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Quantum teleportation

• Quantum teleportation can also be applied to teleport a part
of Alice’s subsystem

• Proposition 4.1. For a state

|ψ〉CD =
k−1∑
i=0

√
λi |i〉C ⊗ |i〉D

with k nonzero Schmidt coefficients the teleportation of D can
be done by consuming

⌈
log2 k

⌉
Bell states.
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2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
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Typical sequences
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Superdense coding

• Suppose that Alice and Bob share two qubits in the state |Φ+〉

• They can use |Φ+〉 to communicate two bits of information
with a single qubit via the following procedure
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Superdense coding

1. Alice applies a unitary on her qubit, depending on which two bits
she wants to send to Bob
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Superdense coding

Resulting states are

00 : |Φ+〉 → (1 ⊗ 1) |Φ+〉 = |Φ+〉 ,

01 : |Φ+〉 → (σz ⊗ 1)
1
√

2
(|00〉+ |11〉) =

1
√

2
(|00〉 − |11〉) = |Φ−〉 ,

10 : |Φ+〉 → (σx ⊗ 1)
1
√

2
(|00〉+ |11〉) =

1
√

2
(|10〉+ |01〉) = |Ψ+〉 ,

11 : |Φ+〉 →
(
iσy ⊗ 1

) 1
√

2
(|00〉+ |11〉) =

1
√

2
(− |10〉+ |01〉) = |Ψ−〉 .
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Superdense coding

2. Alice sends her qubit to Bob, who is now in possession of one of
the four Bell states
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Superdense coding

3. Bob applies a von Neumann measurement in the maximally en-
tangled basis. From his outcome, he can directly read off the two
bits encoded by Alice.
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Superdense coding

Two bits is the maximal amount of classical information that one
qubit can carry

26 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

27 / 31



Outline

1 Entanglement detection

2 Applications of entanglement
Quantum teleportation
Superdense coding

3 Entanglement distillation and dilution
Shannon and von Neumann entropy
Typical sequences

28 / 31



Shannon and von Neumann entropy

Consider an integer random variable x with probability distribution
p(x). A sequence of independent and identically distributed
variables xi has probability distribution

p(x1, . . . , xm) = p(x1)p(x2) . . . p(xm).

Shannon entropy:

H(p(x)) = −
∑

x

p(x) log2 p(x)

Von Neumann entropy of a quantum state ρ with eigenvalues λi :

S(ρ) = −Tr[ρ log2 ρ] = −
∑

i

λi log2 λi
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

• Consider a sequence x1, x2, . . . , xm coming from m flips of a
biased coin (0 = heads, 1 = tails)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

• Consider a sequence x1, x2, . . . , xm coming from m flips of a
biased coin (0 = heads, 1 = tails)

• For large m certain sequences will be suppressed, they are
atypical (e.g. 1, 1, 1, . . . , 1, 1)

• Typical sequences: sequences that are most likely to appear
for large m

31 / 31



Typical sequences

P(heads) = 2/3 P(tails) = 1/3

ε-typical sequence: sequence of independent and identically dis-
tributed random variables xi such that

2−m(H(p(x))+ε) ≤ p(x1, . . . , xm) ≤ 2−m(H(p(x))−ε)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

ε-typical sequence: sequence of independent and identically dis-
tributed random variables xi such that

2−m(H(p(x))+ε) ≤ p(x1, . . . , xm) ≤ 2−m(H(p(x))−ε)

Exercise: For ε = 0.01 and m = 10 is the sequence 1, 1, . . . , 1, 1
ε-typical?
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P(heads) = 2/3 P(tails) = 1/3
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tributed random variables xi such that
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Solution:
• For m = 10 we have p(1, 1, . . . , 1, 1) = 1

310 ≈ 2 × 10−5
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

ε-typical sequence: sequence of independent and identically dis-
tributed random variables xi such that

2−m(H(p(x))+ε) ≤ p(x1, . . . , xm) ≤ 2−m(H(p(x))−ε)

Solution:
• For m = 10 we have p(1, 1, . . . , 1, 1) = 1

310 ≈ 2 × 10−5

• For ε = 0.01 we get 2−m(H(p(x))±ε) ≈ 2 × 10−3

• ⇒ 1, 1, . . . , 1, 1 is not ε-typical
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