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Advanced quantum information (6th class)

Every Wednesday 15:15 - 17:00

e Literature:

¢ Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)

® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Part 1 lecture materials: http://qot.cent.uw.edu.pl/teaching/

Part 2 lecture materials:
http://jkaniewski.fuw.edu.pl/?q=teaching
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@ Quantification of entanglement
Distance-based entanglement measures
Negativity
Distillable entanglement and entanglement cost

@® Entanglement monogamy
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Distance-based entanglement measures
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Distance-based entanglement measures

For a distance function D(p, o) define
E(p) = inf D(p,0)
oeS

with infimum over separable states S
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Distance-based entanglement measures

E is an entanglement measure if:
@ D(p, o) > 0 with equality for p = o
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Distance-based entanglement measures

E is an entanglement measure if:
@ D(p, o) > 0 with equality for p = o
@® D fulfills the data-processing inequality:

D(A[pl, Alo]) < D(p, o)

for any quantum operation A
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Distance-based entanglement measures

E(p) = inf D(p. )

is an entanglement measure
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Distance-based entanglement measures

Proof that E(p) = inf,es D(p, o) does not increase under LOCC:

E(ALocclp]) < E(p)
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Distance-based entanglement measures

Proof that E(p) = inf,es D(p, o) does not increase under LOCC:

E(ALocclp]) < E(p)

Let o be a separable state such that E(p) = D(p, o)
Note that ALocc[o] is separable
* We have

E (ALocclp]) = Lneig D (ALocc[p), 1) < D (ALocclp], ALocclo])

< D(p,o) = E(p)

Proof holds also if Apocc is replaced by separable operations
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Distance-based entanglement measures

Examples for distances fulfilling D(A[p], A[o]) < D(p, 0):
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Distance-based entanglement measures

Examples for distances fulfilling D(A[p], A[o]) < D(p, 0):

¢ Quantum relative entropy

S(plloe) = Tr[p logz p] — Tr[p log, o]

¢ Relative entropy of entanglement:
Er(p) = min S(pllo)
oeS

¢ Upper bound on distillable entanglement
* For pure states: E,(jy)*?) = S(p?)
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Distance-based entanglement measures

Examples for distances fulfilling D(A[p], A[o]) < D(p, 0):
¢ Quantum relative entropy
S(pllor) = Trlplogz p] - Triplog, o]

Relative entropy of entanglement:

Er(p) = min S(pllcr)

Upper bound on distillable entanglement
For pure states: E,([y)*8) = S(p*)
For mixed states: hard to compute in general
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Distance-based entanglement measures

Examples for distances fulfilling D(A[p], A[o’]) < D(p, o):

® Bures distance

)= \2-2F(p.0)
NI

Dy (p, o
)="Tr

with fidelity F(p, o
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Distance-based entanglement measures

Examples for distances fulfilling D(A[p], A[o’]) < D(p, o):

® Bures distance

Dy(p, o) = /2 = 2F(p, o)

with fidelity F(p, o) = Tr \/ vbo vp

® Trace distance ’
Di(p,0) = §||,0 -l

with the trace norm ||M||; = Tr VMM
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Outline

@ Quantification of entanglement

Negativity
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Negativity

* Negativity of p”E:

el - 1

En(pAB) >
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Negativity

* Negativity of p”E:

™l — 1

En(pAB) >

e It holds that E,(0”8) > 0, and E,(p*B) = 0 if p”B has
non-negative partial transpose
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
£ (Mroce [o#°]) < ().
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
= (/\LOCC [PAB]) <Ep (,OAB) .
Proof.
e Section 5.5.: any LOCC protocol can be written as

ALocc[p™®] = Z A® B,-pABAI.T ® BI.T
B

12/20



Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
= (/\LOCC [PAB]) <Ep (,OAB) .
Proof.
e Section 5.5.: any LOCC protocol can be written as

ALocc[p™®] = Z A® B,-pABAI.T ® BI.T
B

¢ Kraus operators A; ® B; fulfilling

> AA®B B =1a8
i

12/20



Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
= (/\LOCC [PAB]) <Ep (,OAB) .
Proof.
e Section 5.5.: any LOCC protocol can be written as

ALocc[p™®] = Z A® B,-pABAI.T ® BI.T
B

¢ Kraus operators A; ® B; fulfilling

> AA®B B =1a8
i

® Partial transpose with respect to Bob’s system:

D AA®BIB =14
i

12/20



Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
= (/\LOCC [PAB]) <Ep (,OAB) .
Proof.
e Section 5.5.: any LOCC protocol can be written as

ALocc[p™®] = Z A® B,-pABAI.T ® BI.T
i
® Kraus operators A; ® B; fulfilling
> AA®B B =1a8
j
® Partial transpose with respect to Bob’s system:

D AA®BIB =14
i

= A;j ® B;" are also valid Kraus operators
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
En (/\LOCC [PAB]) <E, (.OAB) .
Proof.
* Partial transpose of ALocc[p”]:

Ts
(/\LOCC [PAB])TB = Z A® B,’pABA;r ® B;f
i

=Y A®Bp Al e Bf
i
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:

£ (Moce 1) < £1(°).
Proof.
* Partial transpose of ALocc[p”]:

Ts
(/\LOCC [PAB])TB = (Z A® B:'PABA,-T ® B,-T J
i
=Y A®Bp Al e Bf
i

¢ Taking the trace norm gives

HZ Ai®BpA ® BT

- [fi]

H(ALOCC [P B] 1
.
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
£ (Mroce [o#°]) < ().
Proof.

Ts

|

(ALOCC [PAB]) = H/N\ [PTB]

1
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
£ (Mroce [o#°]) < ().
Proof.

Ts

|

¢ Trace norm monotonic under quantum operations:

[#fe™]

(ALOCC [PAB]) = H/N\ [PTB]

1

=M™l
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
£ (Mroce [o#°]) < ().
Proof.

Ts

|

¢ Trace norm monotonic under quantum operations:

[#fe™]

(ALOCC [PAB]) = H/N\ [PTB]

1

=M™l

® In summary:

(/\Locc [PAB])TB

|

<l
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:
£ (Mroce [o#°]) < ().
Proof.

(e

<lpml,
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Monotonicity of E, under LOCC

Theorem 6.2. Negativity does not increase under LOCC:

£ (Moce 7] < £ (o).
Proof.

(e

<lpml,

Recall definition of negativity:

o™l — 1
En(PAB) = 2

Q.E.D.
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Negativity
® Negativity does not increase under LOCC:

En (/\Locc [pAB]) <E, (PAB)
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Negativity
® Negativity does not increase under LOCC:
En (/\Locc [pAB]) <E, (PAB)

* Negativity is strongly monotonic:
Z qi En AB ( AB)

for any states o- B and probabilities g; obtainable from pA8
LOCC
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Negativity
® Negativity does not increase under LOCC:
En (/\Locc [pAB]) <E, (PAB)

* Negativity is strongly monotonic:
Z qi En AB ( AB)

for any states o- B and probabilities g; obtainable from pA8
LOCC

* Negativity is convex:
En (Z p’pAB) < Z piEn (pf\B
i
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Outline

@ Quantification of entanglement

Distillable entanglement and entanglement cost
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Distillable entanglement and entanglement cost

¢ Distillable entanglement: singlet rate obtainable from a
quantum state p via LOCC in the asymptotic limit
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Distillable entanglement and entanglement cost

Distillable entanglement: singlet rate obtainable from a
quantum state p via LOCC in the asymptotic limit

Explicit formula:

Ealp) = sup{r: lim (inf A [0"] - 10y 4"

n—.oo

)

Entanglement cost: singlet rate required to create a state p
via LOCC in the asymptotic limit

Explicit formula:

Eo(p) = inf{r: lim (ir/1\f

n—oo

0% — A [|¢+><¢+|®“”J]

)=}
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Distillable entanglement and entanglement cost

® £, and E. are special cases of asymptotic state-conversion

rates
R(p — o) = sup{r : n||—>n30 (i?\f ”/\ [p®”] . 1) = 0}
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Distillable entanglement and entanglement cost

® £, and E. are special cases of asymptotic state-conversion

rates
)=9)
1

R(p — o) = sup{r : n||—>n30 (i?\f ”/\ [p®”] — g8t
Ea(p) = R(p — [0TX®T]),  Ec(p) = [R(IOT)OT| - p)]“

® |t holds
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Distillable entanglement and entanglement cost

® £, and E. are special cases of asymptotic state-conversion

rates
)=9)
1

R(p — o) = sup{r : n||—>n30 (i?\f ”/\ [p®”] — g8t
Ea(p) = R(p — [0TX®T]),  Ec(p) = [R(IOT)OT| - p)]“

® |t holds

® For pure states holds

S
R(ly) — 1)) =

where py, is the reduced state of |y)
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Distillable entanglement and entanglement cost

Bounds on E4 and E.:
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Distillable entanglement and entanglement cost

Bounds on E4 and E.:

Eq(p®) < Ec(0*®) < Ef(p™?)
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Distillable entanglement and entanglement cost

Bounds on E4 and Eg:

E/(0"B) 2 Eq(p"B) = max{S(p*) - S(p*?). S(o®) - S(p?)}
Application: consider maximally correlated state
phS = ayliiji
i
For agep > aii linii it holds

S(pmcllo-sep) (pﬁlc) - S( élg)

We have: S(o8[I48) > E.(0"8) > Eq(p") > S(pfh.) - S(p2)

= Eq(phS) = S(ohe) — S(ong)
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@® Entanglement monogamy
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Entanglement monogamy

Exercise: If two qubits A and B

are in the state |®), prove that o~
they cannot be correlated with an- (AT
other qubit C ~_/ B
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Entanglement monogamy

Exercise: If two qubits A and B

are in the state |®), prove that o~

they cannot be correlated with an- (AT

other qubit C ~ _
\‘i‘;/,

Solution:

e Consider total state p”BC¢

e Reduced state is p*B = [d+)(d+*B

® = total state must be

AB
pBC = |0 )T ®pC
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Entanglement monogamy

Entanglement monogamy: If [0 ( /,‘

two qubits A and B are maximally —

entangled, they cannot be entan- f f

gled with another qubit C N N
(C)
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Entanglement monogamy

Entanglement monogamy: If ‘ )

two qubits A and B are maximally ey
entangled, they cannot be entan- (AT
gled with another qubit C ~—/ B

Compare to classical random variables: a classical random variable
A can be maximally correlated with B and C at the same time:

1 1
p"BC = 51000)(000] + Z [111X111]
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Entanglement monogamy

Entanglement monogamy: |If [0 * '
two qubits A and B are maximally —~
entangled, they cannot be entan- f f

gled with another qubit C ~_/ N

* For a pure state [)*BC it holds

2 2 2
Cas +Cac<Chgc

20/20



Entanglement monogamy

Entanglement monogamy: If ‘ ) >

two qubits A and B are maximally ey
entangled, they cannot be entan- (AT
gled with another qubit C ~—/ B

* For a pure state [)*BC it holds
2 2 2
Caz+Cac=Canc

® Ca.g and Ca.c: concurrence of the reduced state p8 and pA°©
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Entanglement monogamy

Entanglement monogamy: If ‘ ) >

two qubits A and B are maximally ey
entangled, they cannot be entan- (AT
gled with another qubit C ~—/ B

* For a pure state [)*BC it holds

2 2 2
Cas +Cac<Chgc

® Ca.g and Ca.c: concurrence of the reduced state p8 and pA°©

® Casc = v2(1-Tr[(p*)?])
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