Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

4th class
March 23, 2022

Advanced quantum information

- Every Wednesday 15:15-17:00
- Literature:
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2012)
- Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009)
- Howework and lecture notes: http://qot.cent.uw.edu.pl/teaching/
- 2. Homework sheet to be submitted via email by 5. April

Outline

(1) Entanglement distillation and dilution

Typical sequences
Entanglement dilution
Entanglement distillation
LOCC and separable operations
Mixed state entanglement distillation

Outline

(1) Entanglement distillation and dilution

Typical sequences
Entanglement dilution
Entanglement distillation
LOCC and separable operations
Mixed state entanglement distillation

Outline

(1) Entanglement distillation and dilution

Typical sequences
Entanglement dilution
Entanglement distillation
LOCC and separable operations
Mixed state entanglement distillation

Typical sequences

- Consider a sequence $x_{1}, x_{2}, \ldots, x_{m}$ coming from m flips of a biased coin ($0=$ heads, $1=$ tails)

Typical sequences

- Consider a sequence $x_{1}, x_{2}, \ldots, x_{m}$ coming from m flips of a biased coin ($0=$ heads, $1=$ tails $)$
- For large m certain sequences will be suppressed, they are atypical (e.g. 1, 1, 1, ..., 1, 1)

Typical sequences

$$
P(\text { heads })=2 / 3
$$

- Consider a sequence $x_{1}, x_{2}, \ldots, x_{m}$ coming from m flips of a biased coin ($0=$ heads, $1=$ tails $)$
- For large m certain sequences will be suppressed, they are atypical (e.g. 1, 1, 1, ..., 1, 1)
- Typical sequences: sequences that are most likely to appear for large m

Typical sequences

ϵ-typical sequence: sequence of independent and identically distributed random variables x_{i} such that

$$
2^{-m(H(p(x))+\epsilon)} \leq p\left(x_{1}, \ldots, x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}
$$

Typical sequences

$P($ tails $)=1 / 3$
ϵ-typical sequence: sequence of independent and identically distributed random variables x_{i} such that

$$
2^{-m(H(p(x))+\epsilon)} \leq p\left(x_{1}, \ldots, x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}
$$

Exercise: For $\epsilon=0.01$ and $m=10$ is the sequence $1,1, \ldots, 1,1$ ϵ-typical?

Typical sequences

$P($ tails $)=1 / 3$
ϵ-typical sequence: sequence of independent and identically distributed random variables x_{i} such that

$$
2^{-m(H(p(x))+\epsilon)} \leq p\left(x_{1}, \ldots, x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}
$$

Solution:

- For $m=10$ we have $p(1,1, \ldots, 1,1)=\frac{1}{3^{10}} \approx 2 \times 10^{-5}$

Typical sequences

$P($ heads $)=2 / 3$

$P($ tails $)=1 / 3$
ϵ-typical sequence: sequence of independent and identically distributed random variables x_{i} such that

$$
2^{-m(H(p(x))+\epsilon)} \leq p\left(x_{1}, \ldots, x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}
$$

Solution:

- For $m=10$ we have $p(1,1, \ldots, 1,1)=\frac{1}{3^{10}} \approx 2 \times 10^{-5}$
- For $\epsilon=0.01$ we get $2^{-m(H(p(x)) \pm \epsilon)} \approx 2 \times 10^{-3}$

Typical sequences

$P($ heads $)=2 / 3$

$P($ tails $)=1 / 3$
ϵ-typical sequence: sequence of independent and identically distributed random variables x_{i} such that

$$
2^{-m(H(p(x))+\epsilon)} \leq p\left(x_{1}, \ldots, x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}
$$

Solution:

- For $m=10$ we have $p(1,1, \ldots, 1,1)=\frac{1}{3^{10}} \approx 2 \times 10^{-5}$
- For $\epsilon=0.01$ we get $2^{-m(H(p(x)) \pm \epsilon)} \approx 2 \times 10^{-3}$
$\bullet \Rightarrow 1,1, \ldots, 1,1$ is not ϵ-typical

Typical sequences

Theorem of typical sequences:
(1) Fix $\epsilon>0$. For any $\delta>0$, for sufficiently large m the probability that a sequence is ϵ-typical is at least $1-\delta$:

$$
\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)>1-\delta
$$

Typical sequences

Theorem of typical sequences:
(1) Fix $\epsilon>0$. For any $\delta>0$, for sufficiently large m the probability that a sequence is ϵ-typical is at least $1-\delta$:

$$
\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)>1-\delta
$$

(2) For any fixed $\epsilon>0$ and $\delta>0$, for sufficiently large m, the number $|T(m, \epsilon)|$ of ϵ-typical sequences satisfies

$$
(1-\delta) 2^{m(H(p(x))-\epsilon)} \leq|T(m, \epsilon)| \leq 2^{m(H(p(x))+\epsilon)}
$$

Outline

(1) Entanglement distillation and dilution

Typical sequences

> Entanglement dilution
> Entanglement distillation
> LOCC and separable operations
> Mixed state entanglement distillation

Entanglement dilution

Entanglement dilution

> Entanglement dilution: LOCC protocol transforming n singlets into m copies of $|\psi\rangle$

Entanglement dilution

Entanglement dilution: LOCC protocol transforming n singlets into m copies of $|\psi\rangle$

Entanglement cost of $|\psi\rangle$: minimal fraction $\frac{n}{m}$ in the limit $n \rightarrow \infty$

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Proof. Suppose an entangled state $|\psi\rangle$ has Schmidt decomposition

$$
|\psi\rangle=\sum_{x} \sqrt{p(x)}|x\rangle^{A} \otimes|x\rangle^{B} .
$$

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Proof. Suppose an entangled state $|\psi\rangle$ has Schmidt decomposition

$$
|\psi\rangle=\sum_{x} \sqrt{p(x)}|x\rangle^{A} \otimes|x\rangle^{B} .
$$

The state $\left|\psi_{m}\right\rangle:=|\psi\rangle^{\otimes m}$ can be written as

$$
\left|\psi_{m}\right\rangle=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Proof. Suppose an entangled state $|\psi\rangle$ has Schmidt decomposition

$$
|\psi\rangle=\sum_{x} \sqrt{p(x)}|x\rangle^{A} \otimes|x\rangle^{B} .
$$

The state $\left|\psi_{m}\right\rangle:=|\psi\rangle^{\otimes m}$ can be written as
$\left|\psi_{m}\right\rangle=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}$.
Define $\left|\phi_{m}\right\rangle$ by omitting terms x_{1}, \ldots, x_{m} which are not ϵ-typical:

$$
\left|\phi_{m}\right\rangle=\sum_{x \epsilon \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Entanglement dilution

$$
\left|\phi_{m}\right\rangle=\sum_{x \epsilon-\text { typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Entanglement dilution

$$
\left|\phi_{m}\right\rangle=\sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Normalize this state by defining

$$
\left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{\left\langle\phi_{m} \mid \phi_{m}\right\rangle}}\left|\phi_{m}\right\rangle
$$

Entanglement dilution

$$
\left|\phi_{m}\right\rangle=\sum_{x \in-\text { typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Normalize this state by defining

$$
\left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{\left\langle\phi_{m} \mid \phi_{m}\right\rangle}}\left|\phi_{m}\right\rangle
$$

Consider the scalar product $\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle$:

$$
\begin{aligned}
\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle & =\frac{1}{\sqrt{\left\langle\phi_{m} \mid \phi_{m}\right\rangle}} \sum_{x \epsilon \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right) \\
& =\sqrt{\sum_{\epsilon \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}
\end{aligned}
$$

Entanglement dilution

$$
\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle=\sqrt{\sum_{\epsilon-\text { typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}
$$

Entanglement dilution

$$
\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle=\sqrt{\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}
$$

Part (1) of the theorem of typical sequences implies that

$$
\lim _{m \rightarrow \infty}\left(\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)\right)=1
$$

and thus

$$
\lim _{m \rightarrow \infty}\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle=1
$$

Entanglement dilution

$$
\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle=\sqrt{\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}
$$

Part (1) of the theorem of typical sequences implies that

$$
\lim _{m \rightarrow \infty}\left(\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)\right)=1
$$

and thus

$$
\lim _{m \rightarrow \infty}\left\langle\psi_{m} \mid \phi_{m}^{\prime}\right\rangle=1
$$

$\Rightarrow\left|\phi_{m}^{\prime}\right\rangle$ is a good approximation of $|\psi\rangle^{\otimes m}$ in the limit $m \rightarrow \infty$

Entanglement dilution

- Alice prepares the state $\left|\phi_{m}^{\prime}\right\rangle$ locally, and teleports half of it over to Bob

Entanglement dilution

- Alice prepares the state $\left|\phi_{m}^{\prime}\right\rangle$ locally, and teleports half of it over to Bob
- Part (2) of the theorem of typical sequences \Rightarrow number of nonzero Schmidt coefficients of

$$
\left|\phi_{m}\right\rangle=\sum_{x \epsilon \text {-typical }} \sqrt{p\left(x_{1}\right) \ldots p\left(x_{m}\right)}\left|x_{1} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} \ldots x_{m}\right\rangle^{B}
$$

(and thus $\left|\phi_{m}^{\prime}\right\rangle$) is at most $2^{m(H(p(x))+\epsilon)}=2^{m\left(S\left(\rho_{\psi}\right)+\epsilon\right)}$

Entanglement dilution

- Alice prepares the state $\left|\phi_{m}^{\prime}\right\rangle$ locally, and teleports half of it over to Bob
- Part (2) of the theorem of typical sequences \Rightarrow number of nonzero Schmidt coefficients of

$$
\left|\phi_{m}\right\rangle=\sum_{x \epsilon \text {-typical }} \sqrt{p\left(x_{1}\right) \ldots p\left(x_{m}\right)}\left|x_{1} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} \ldots x_{m}\right\rangle^{B}
$$

(and thus $\left|\phi_{m}^{\prime}\right\rangle$) is at most $2^{m(H(p(x))+\epsilon)}=2^{m\left(S\left(\rho_{\psi}\right)+\epsilon\right)}$

- Recall Proposition 4.1.: for a state with k nonzero Schmidt coefficients teleportation can be done by consuming $\left\lceil\log _{2} k\right\rceil$ Bell states

Entanglement dilution

- Alice prepares the state $\left|\phi_{m}^{\prime}\right\rangle$ locally, and teleports half of it over to Bob
- Part (2) of the theorem of typical sequences \Rightarrow number of nonzero Schmidt coefficients of

$$
\left|\phi_{m}\right\rangle=\sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) \ldots p\left(x_{m}\right)}\left|x_{1} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} \ldots x_{m}\right\rangle^{B}
$$

(and thus $\left|\phi_{m}^{\prime}\right\rangle$) is at most $2^{m(H(p(x))+\epsilon)}=2^{m\left(S\left(\rho_{\psi}\right)+\epsilon\right)}$

- Recall Proposition 4.1.: for a state with k nonzero Schmidt coefficients teleportation can be done by consuming $\left\lceil\log _{2} k\right\rceil$ Bell states
- \Rightarrow Teleportation of $\left|\phi_{m}^{\prime}\right\rangle$ can be performed by using at most

$$
n=\left\lceil m\left(S\left(\rho_{\psi}\right)+\epsilon\right)\right\rceil
$$

Bell states

Entanglement dilution

- Teleportation of $\left|\phi_{m}^{\prime}\right\rangle$ can be performed by using at most

$$
n=\left\lceil m\left(S\left(\rho_{\psi}\right)+\epsilon\right)\right\rceil
$$

Bell states

Entanglement dilution

- Teleportation of $\left|\phi_{m}^{\prime}\right\rangle$ can be performed by using at most

$$
n=\left\lceil m\left(S\left(\rho_{\psi}\right)+\epsilon\right)\right\rceil
$$

Bell states

- For the ratio n / m we obtain $\frac{n}{m} \approx S\left(\rho_{\psi}\right)+\epsilon$

Entanglement dilution

- Teleportation of $\left|\phi_{m}^{\prime}\right\rangle$ can be performed by using at most

$$
n=\left\lceil m\left(S\left(\rho_{\psi}\right)+\epsilon\right)\right\rceil
$$

Bell states

- For the ratio n / m we obtain $\frac{n}{m} \approx S\left(\rho_{\psi}\right)+\epsilon$
- \Rightarrow Entanglement cost of $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$
Q.E.D.

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Entanglement dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$, where $\rho_{\psi}=\operatorname{Tr}_{B}[|\psi\rangle\langle\psi|]$ is the reduced state of Alice.

Exercise: Estimate the entanglement cost for the state
$|\psi\rangle=\sqrt{\frac{1}{3}}|00\rangle+\sqrt{\frac{2}{3}}|11\rangle$. Can entanglement cost be larger than 1 ?

Outline

(1) Entanglement distillation and dilution

Typical sequences
Entanglement dilution

Entanglement distillation

LOCC and separable operations
Mixed state entanglement distillation

Entanglement distillation

Entanglement distillation

Entanglement distillation: reverse of entanglement dilution, LOCC protocol converting m copies of $|\psi\rangle$ into n singlets

Entanglement distillation

Entanglement distillation: reverse of entanglement dilution, LOCC protocol converting m copies of $|\psi\rangle$ into n singlets

Distillable entanglement

 of $|\psi\rangle$: maximal fraction $\frac{n}{m}$ in the limit $m \rightarrow \infty$
Entanglement distillation

Proposition 5.2. The distillable entanglement of a state $|\psi\rangle$ is at least $S\left(\rho_{\psi}\right)$.

Entanglement distillation

Proposition 5.2. The distillable entanglement of a state $|\psi\rangle$ is at least $S\left(\rho_{\psi}\right)$.

Proof. Suppose that Alice and Bob share

$$
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Entanglement distillation

Proposition 5.2. The distillable entanglement of a state $|\psi\rangle$ is at least $S\left(\rho_{\psi}\right)$.

Proof. Suppose that Alice and Bob share

$$
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
$$

Alice performs a projective measurement with Kraus operators

$$
\Pi_{0}=\sum_{x \in-\text { typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
$$

and $\Pi_{1}=\mathbb{1}-\Pi_{0}$.

Entanglement distillation

$$
\begin{gathered}
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B} .} \\
\Pi_{0}=\sum_{x \epsilon \text {-typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
\end{gathered}
$$

Entanglement distillation

$$
\begin{gathered}
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B} . \\
\Pi_{0}=\sum_{x \epsilon-\text { typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
\end{gathered}
$$

Exercise: evaluate $p_{0}=\operatorname{Tr}\left[\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle\left\langle\left.\psi\right|^{\otimes m}\right]\right.$

Entanglement distillation

$$
\begin{gathered}
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B} . \\
\Pi_{0}=\sum_{x \in \text {-typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
\end{gathered}
$$

Probability of measurement outcome 0 :

$$
p_{0}=\operatorname{Tr}\left[\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle\left\langle\left.\psi\right|^{\otimes m}\right]=\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)\right.
$$

Entanglement distillation

$$
\begin{gathered}
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B} . \\
\Pi_{0}=\sum_{x \epsilon \text {-typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
\end{gathered}
$$

Probability of measurement outcome 0 :

$$
p_{0}=\operatorname{Tr}\left[\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle\left\langle\left.\psi\right|^{\otimes m}\right]=\sum_{x \in \text {-typical }} p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)\right.
$$

Part (1) of theorem of typical sequences: $p_{0}>1-\delta$ for m large enough

Entanglement distillation

$$
\begin{gathered}
|\psi\rangle^{\otimes m}=\sum_{x_{1}, x_{2}, \ldots, x_{m}} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B} . \\
\Pi_{0}=\sum_{x \in \text {-typical }}\left|x_{1} x_{2} \ldots x_{m}\right\rangle\left\langle x_{1} x_{2} \ldots x_{m}\right|
\end{gathered}
$$

Post-measurement state of Alice and Bob:

$$
\begin{aligned}
& \left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{p_{0}}}\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle^{\otimes m}= \\
& \frac{1}{\sqrt{p_{0}}} \sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
\end{aligned}
$$

Entanglement distillation

Post-measurement state of Alice and Bob:

$$
\begin{aligned}
& \left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{p_{0}}}\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle^{\otimes m}= \\
& \frac{1}{\sqrt{p_{0}}} \sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
\end{aligned}
$$

Entanglement distillation

Post-measurement state of Alice and Bob:

$$
\begin{aligned}
& \left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{p_{0}}}\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle^{\otimes m}= \\
& \frac{1}{\sqrt{p_{0}}} \sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
\end{aligned}
$$

- By definition of ϵ-typical sequences:

$$
p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}=2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}
$$

Entanglement distillation

Post-measurement state of Alice and Bob:

$$
\begin{aligned}
& \left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{p_{0}}}\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle^{\otimes m}= \\
& \frac{1}{\sqrt{p_{0}}} \sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
\end{aligned}
$$

- By definition of ϵ-typical sequences:

$$
p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}=2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}
$$

- Part (1) of theorem of typical sequences: $p_{0}>1-\delta$ for any $\delta>0$ and m large enough

Entanglement distillation

Post-measurement state of Alice and Bob:

$$
\begin{aligned}
& \left|\phi_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{p_{0}}}\left(\Pi_{0} \otimes \mathbb{1}\right)|\psi\rangle^{\otimes m}= \\
& \frac{1}{\sqrt{p_{0}}} \sum_{x \in \text {-typical }} \sqrt{p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)}\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{A} \otimes\left|x_{1} x_{2} \ldots x_{m}\right\rangle^{B}
\end{aligned}
$$

- By definition of ϵ-typical sequences:

$$
p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right) \leq 2^{-m(H(p(x))-\epsilon)}=2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}
$$

- Part (1) of theorem of typical sequences: $p_{0}>1-\delta$ for any $\delta>0$ and m large enough
- \Rightarrow largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

- Schmidt coefficients of $\left|\phi_{m}^{\prime}\right\rangle$ correspond to eigenvalues of $\rho_{\phi_{m}^{\prime}}$

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

- Schmidt coefficients of $\left|\phi_{m}^{\prime}\right\rangle$ correspond to eigenvalues of $\rho_{\phi_{m}^{\prime}}$
- \Rightarrow all eigenvalues of $\rho_{\phi_{m}^{\prime}}$ are at most 2^{-n}

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

- Schmidt coefficients of $\left|\phi_{m}^{\prime}\right\rangle$ correspond to eigenvalues of $\rho_{\phi_{m}^{\prime}}$
- \Rightarrow all eigenvalues of $\rho_{\phi_{m}^{\prime}}$ are at most 2^{-n}
- $\Rightarrow \vec{\lambda}_{\phi_{m}^{\prime}}$ is majorized by the vector

$$
\vec{v}=(\underbrace{2^{-n}, 2^{-n}, \ldots, 2^{-n}}_{2^{n} \text { times }}, 0, \ldots, 0)
$$

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

- $\Rightarrow \vec{\lambda}_{\phi_{m}^{\prime}}$ is majorized by the vector

$$
\vec{v}=(\underbrace{2^{-n}, 2^{-n}, \ldots, 2^{-n}}_{2^{n} \text { times }}, 0, \ldots, 0)
$$

- Theorem 2.1.: $\left|\phi_{m}^{\prime}\right\rangle$ can then be converted into n singlets via LOCC

Entanglement distillation

Largest Schmidt coefficient of $\left|\phi_{m}^{\prime}\right\rangle$ is at most

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta}
$$

Choose n such that

$$
\frac{2^{-m\left(S\left(\rho_{\psi}\right)-\epsilon\right)}}{1-\delta} \leq 2^{-n}
$$

- $\Rightarrow \vec{\lambda}_{\phi_{m}^{\prime}}$ is majorized by the vector

$$
\vec{v}=(\underbrace{2^{-n}, 2^{-n}, \ldots, 2^{-n}}_{2^{n} \text { times }}, 0, \ldots, 0)
$$

- Theorem 2.1.: $\left|\phi_{m}^{\prime}\right\rangle$ can then be converted into n singlets via LOCC
- ϵ and δ can be chosen arbitrary small $\Rightarrow n / m$ arbitrary close to $S\left(\rho_{\psi}\right)$ in the limit of large m
Q.E.D.

Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most
$S\left(\rho_{\psi}\right)$.

Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$.

Proposition 5.2. The distillable entanglement of a state $|\psi\rangle$ is at least $S\left(\rho_{\psi}\right)$.

Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state $|\psi\rangle$ is at most $S\left(\rho_{\psi}\right)$.

Proposition 5.2. The distillable entanglement of a state $|\psi\rangle$ is at least $S\left(\rho_{\psi}\right)$.

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle$ are equal to $S\left(\rho_{\psi}\right)$.

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Proposition 5.1. \Rightarrow Alice and Bob can convert $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $|\psi\rangle^{\otimes m}$ such that $k / m \approx S\left(\rho_{\psi}\right)$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Proposition 5.1. \Rightarrow Alice and Bob can convert $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $|\psi\rangle^{\otimes m}$ such that $k / m \approx S\left(\rho_{\psi}\right)$
- $|\psi\rangle^{\otimes m}$ is then converted into $\left|\Psi^{-}\right\rangle^{\otimes n}$ with $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Proposition 5.1. \Rightarrow Alice and Bob can convert $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $|\psi\rangle^{\otimes m}$ such that $k / m \approx S\left(\rho_{\psi}\right)$
- $|\psi\rangle^{\otimes m}$ is then converted into $\left|\Psi^{-}\right\rangle^{\otimes n}$ with $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$
- In summary: Alice and Bob converted $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$, where

$$
n \approx m S=k \frac{S}{S\left(\rho_{\psi}\right)}>k
$$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Alice and Bob converted $\left|\Psi^{-}\right\rangle^{\otimes \mathrm{k}}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$, where

$$
n \approx m S=k \frac{S}{S\left(\rho_{\psi}\right)}>k
$$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Alice and Bob converted $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$, where

$$
n \approx m S=k \frac{S}{S\left(\rho_{\psi}\right)}>k
$$

- Contradiction: Increasing the number of singlets via LOCC is impossible!

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Alice and Bob converted $\left|\Psi^{-}\right\rangle^{\otimes k}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$, where

$$
n \approx m S=k \frac{S}{S\left(\rho_{\psi}\right)}>k
$$

- Contradiction: Increasing the number of singlets via LOCC is impossible!
- \Rightarrow assumption was wrong \Rightarrow distillable entanglement of $|\psi\rangle$ is equal to $S\left(\rho_{\psi}\right)$

Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement cost of a state $|\psi\rangle^{A B}$ are equal to $S\left(\rho_{\psi}\right)$.

Proof. Assume that there exists an LOCC protocol converting $|\psi\rangle^{\otimes m}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$ such that $\frac{n}{m} \approx S>S\left(\rho_{\psi}\right)$

- Alice and Bob converted $\left|\Psi^{-}\right\rangle^{\otimes \mathrm{k}}$ into $\left|\Psi^{-}\right\rangle^{\otimes n}$, where

$$
n \approx m S=k \frac{S}{S\left(\rho_{\psi}\right)}>k
$$

- Contradiction: Increasing the number of singlets via LOCC is impossible!
- \Rightarrow assumption was wrong \Rightarrow distillable entanglement of $|\psi\rangle$ is equal to $S\left(\rho_{\psi}\right)$
- Proof for entanglement cost by similar reasoning. Q.E.D.

Outline

(1) Entanglement distillation and dilution

Typical sequences
Entanglement dilution
Entanglement distillation
LOCC and separable operations
Mixed state entanglement distillation

LOCC and separable operations

- Any LOCC protocol is a separable operation:

$$
\rho^{A B} \rightarrow \Lambda_{\mathrm{LOCC}}\left(\rho^{A B}\right)=\sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

LOCC and separable operations

- Any LOCC protocol is a separable operation:

$$
\rho^{A B} \rightarrow \Lambda_{\mathrm{LOCC}}\left(\rho^{A B}\right)=\sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

- Completeness condition:

$$
\sum_{i} A_{i}^{\dagger} A_{i} \otimes B_{i}^{\dagger} B_{i}=\mathbb{1}_{A B}
$$

LOCC and separable operations

- Any LOCC protocol is a separable operation:

$$
\rho^{A B} \rightarrow \Lambda_{\mathrm{LOCC}}\left(\rho^{A B}\right)=\sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

- Completeness condition:

$$
\sum_{i} A_{i}^{\dagger} A_{i} \otimes B_{i}^{\dagger} B_{i}=\mathbb{1}_{A B}
$$

- Not every separable operation is an LOCC

Stochastic LOCC

- Stochastic LOCC transformation:

$$
\rho^{A B} \rightarrow \frac{1}{p} \sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

Stochastic LOCC

- Stochastic LOCC transformation:

$$
\rho^{A B} \rightarrow \frac{1}{p} \sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

- (In)completeness condition:

$$
\sum_{i} A_{i}^{\dagger} A_{i} \otimes B_{i}^{\dagger} B_{i} \leq \mathbb{1}_{A B}
$$

Stochastic LOCC

- Stochastic LOCC transformation:

$$
\rho^{A B} \rightarrow \frac{1}{p} \sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

- (In)completeness condition:

$$
\sum_{i} A_{i}^{\dagger} A_{i} \otimes B_{i}^{\dagger} B_{i} \leq \mathbb{1}_{A B}
$$

- Probability of the transformation:

$$
p=\operatorname{Tr}\left[\sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}\right]
$$

Stochastic LOCC

- Stochastic LOCC transformation:

$$
\rho^{A B} \rightarrow \frac{1}{p} \sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}
$$

- (In)completeness condition:

$$
\sum_{i} A_{i}^{\dagger} A_{i} \otimes B_{i}^{\dagger} B_{i} \leq \mathbb{1}_{A B}
$$

- Probability of the transformation:

$$
p=\operatorname{Tr}\left[\sum_{i} A_{i} \otimes B_{i} \rho^{A B} A_{i}^{\dagger} \otimes B_{i}^{\dagger}\right]
$$

- Stochastic LOCC transformation mapping $\mathcal{H}_{A B}$ onto the space of two qubits: A_{i} is a $2 \times d_{A}$ rectangular matrix, B_{i} is a $2 \times d_{B}$ rectangular matrix

Outline

(1) Entanglement distillation and dilution

> Typical sequences
> Entanglement dilution Entanglement distillation LOCC and separable operations

Mixed state entanglement distillation

Mixed state entanglement distillation

Mixed state entanglement distillation

Entanglement distillation for mixed states: converting m copies of ρ into n singlets in the limit $m \rightarrow \infty$

Mixed state entanglement distillation

Entanglement distillation for mixed states: converting m copies of ρ into n singlets in the limit $m \rightarrow \infty$

Exercise: can a separable state $\rho_{\text {sep }}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes$ $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ be distilled into singlets?

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

- Section 5.5.: stochastic LOCC brings $\rho^{\otimes m}$ to

$$
\sigma=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

with probability $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho{ }^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

- Section 5.5.: stochastic LOCC brings $\rho^{\otimes m}$ to

$$
\sigma=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

with probability $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$

- If ρ is separable $\Rightarrow \rho^{\otimes m}$ is separable $\Rightarrow \sigma$ is separable

