Advanced quantum information:
entanglement and nonlocality

Alexander Streltsov

4th class
March 23, 2022
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Advanced quantum information

Every Wednesday 15:15 - 17:00

® Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

¢ 2. Homework sheet to be submitted via email by 5. April
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)

® For large m certain sequences will be suppressed, they are
atypical (e.g. 1,1,1,...,1,1)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3
® Consider a sequence X1, X2, ..., Xm coming from m flips of a
biased coin (0 = heads, 1 = tails)

® For large m certain sequences will be suppressed, they are
atypical (e.g. 1,1,1,...,1,1)

® Typical sequences: sequences that are most likely to appear
for large m
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Exercise: For e = 0.01 and m = 10 is the sequence 1,1,...,1,1
e-typical?
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Solution:
* For m=10we have p(1,1,...,1,1) = 5 * 2x 107
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3
e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

o-m(H(p(x))+e) < P(X1s. .. Xm) < o—m(H(p(x))-e€)

Solution:

* For m=10we have p(1,1,...,1,1) = 5 * 2x 107

® For e = 0.01 we get 2-M(H(P(X))x€) ~ 2 x 103
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Typical sequences

P(heads) = 2/3 P(tails) = 1/3

e-typical sequence: sequence of independent and identically dis-
tributed random variables x; such that

2-m(HE(N ) < p(xy. ... xm) < 2-MHE0)-€)

Solution:

* For m=10we have p(1,1,...,1,1) = 5 * 2x 107

® For e = 0.01 we get 2-M(H(P(X))x€) ~ 2 x 103

* = 1,1,...,1,1is not e-typical
6/29



Typical sequences

Theorem of typical sequences:
(1) Fix e > 0. For any ¢ > 0, for sufficiently large m the probability
that a sequence is e-typical is at least 1 — 4:

> p(xa)p(x2)...p(Xm) > 1 - 6.

X e—typical
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Typical sequences

Theorem of typical sequences:
(1) Fix e > 0. For any ¢ > 0, for sufficiently large m the probability
that a sequence is e-typical is at least 1 — 4:

> p(xa)p(x2)...p(Xm) > 1 - 6.

X e—typical

(2) For any fixed € > 0 and ¢ > 0, for sufficiently large m, the
number |T(m, €)| of e-typical sequences satisfies

(1- 5)2m(H(P(X))—6) <|T(m,€)l < om(H(p(x))-+e)

7/29



Outline

@ Entanglement distillation and dilution

Entanglement dilution
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Entanglement dilution
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Entanglement dilution
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Entanglement dilution
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Entanglement dilution:
LOCC protocol trans-
forming n singlets into m
copies of i)

Entanglement cost of |i):

minimal fraction I in the
limit n — oo
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly)(yl] is the reduced state of Alice.
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly)(yl] is the reduced state of Alice.

Proof. Suppose an entangled state |) has Schmidt decomposition

Wy =D PO " @10
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly)(yl] is the reduced state of Alice.

Proof. Suppose an entangled state |) has Schmidt decomposition

Wy =D PO " @10

The state |[ym) := [¢)®" can be written as

Wmy = > \/p(X1 P(x2) ... p(Xm) X1 X2 . .. Xm)* ®lX1 X2 ... Xm) P .

X1,X2,...,Xm
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly)(yl] is the reduced state of Alice.

Proof. Suppose an entangled state |) has Schmidt decomposition

Wy =D PO " @10

The state |[ym) := [¢)®" can be written as

Wm) = 3. AP(XP() . P(Xm) XX - XY @i Xo . Xm)®

X1,X2,..., Xm

Define |¢pm) by omitting terms x4, ..., X, which are not e-typical:

lpm) = Z \/p (41)P(x2) - .- P(Xm) X1 Xz .. Xm) ®IX1 X ... Xen)®

X e—typical
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Entanglement dilution

md = > AP(1)P(2) .. p(Xm) 1 X2 ... X BIx1 Xz . X

X e—typical
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Entanglement dilution

md = > \Px1)P() .. p(xm) i Xe . X Blx1 e . Xen)

X e—typical

Normalize this state by defining

1
pm) = ———=I¢m) -
(Pmlpm)
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Entanglement dilution

gy = > \/p (x1)p(X2) - .. p(Xm) X1 Xz . .. Xm)* ®IX1 X2 . .

X e—typical

Normalize this state by defining

1
V{(Pmlpm)

Consider the scalar product (m|¢r,):

p(x1)p(x2) ... p(Xm)

Wmlppm) =
V<¢m|¢m X e%‘;ncal

2, Plxa)p(xe)...plxm)

X e—typical

B
Xm)
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Entanglement dilution

Waltmy = | > p(x1)p(%2)...p(xm)

X e—typical
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Entanglement dilution

Waltmy = | > p(x1)p(%2)...p(xm)

X e—typical
Part (1) of the theorem of typical sequences implies that

nl‘L‘L[ Z p(x1)p(x2) .. -p(xm)] =1,

X e—typical
and thus
lim Wmlrn) = 1.
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Entanglement dilution

Waltmy = | > p(x1)p(%2)...p(xm)

X e—typical
Part (1) of the theorem of typical sequences implies that

nl‘L‘L[ Z p(x1)p(x2) .. -p(xm)] =1,

X e—typical
and thus
lim Wmlrn) = 1.

= |¢/,) is a good approximation of [)®" in the limit m — c
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Entanglement dilution

* Alice prepares the state |¢},) locally, and teleports half of it
over to Bob
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Entanglement dilution

* Alice prepares the state |¢},) locally, and teleports half of it
over to Bob

* Part (2) of the theorem of typical sequences = number of
nonzero Schmidt coefficients of

lpm) = Z IP(X1) o p(Xm) 1X4 - XY @ Xy . Xm)B

X e—typical

(and thus |¢/,)) is at most 2M(H(P())+€) — am(S(py)+e)
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Entanglement dilution

* Alice prepares the state |¢},) locally, and teleports half of it
over to Bob

* Part (2) of the theorem of typical sequences = number of
nonzero Schmidt coefficients of

lpm) = Z IP(X1) o p(Xm) 1X4 - XY @ Xy . Xm)B

X e—typical

(and thus |¢/,)) is at most 2M(H(P())+€) — am(S(py)+e)

® Recall Proposition 4.1.: for a state with k nonzero Schmidt
coefficients teleportation can be done by consuming [log, k|
Bell states
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Entanglement dilution

* Alice prepares the state |¢},) locally, and teleports half of it
over to Bob

* Part (2) of the theorem of typical sequences = number of
nonzero Schmidt coefficients of

lpm) = Z IP(X1) o p(Xm) 1X4 - XY @ Xy . Xm)B

X e—typical

(and thus |¢/,)) is at most 2M(H(P())+€) — am(S(py)+e)

® Recall Proposition 4.1.: for a state with k nonzero Schmidt
coefficients teleportation can be done by consuming [log, k|
Bell states

* = Teleportation of |¢7,,) can be performed by using at most

n=[m(S(os) + )]

Bell states
13/29



Entanglement dilution

* Teleportation of |¢7,,) can be performed by using at most

n=[m(S(py) + €|

Bell states
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Entanglement dilution

* Teleportation of |¢7,,) can be performed by using at most
n=[m(S(py) + €]

Bell states

* For the ratio n/m we obtain 2 ~ S(py) + €
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Entanglement dilution

* Teleportation of |¢7,,) can be performed by using at most
n=[m(S(py) + €]

Bell states
* For the ratio n/m we obtain 2 ~ S(py) + €

* = Entanglement cost of |y) is at most S(py)
Q.E.D.
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly){y] is the reduced state of Alice.
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Entanglement dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py), where p, = Trg[ly){y] is the reduced state of Alice.

Exercise: Estimate the entanglement cost for the state
W) = \/g|00>+ \/§|11>. Can entanglement cost be larger than 1?

15/29



Outline

@ Entanglement distillation and dilution

Entanglement distillation
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Entanglement distillation
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Entanglement distillation

Entanglement  distilla-
tion: reverse of entan-
glement dilution, LOCC
protocol converting m
copies of |i) into n singlets
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Entanglement distillation

Entanglement  distilla-
tion: reverse of entan-
glement dilution, LOCC
protocol converting m
copies of |i) into n singlets

Distillable entanglement
of |y): maximal fraction
in the limit m — oo
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Entanglement distillation

Proposition 5.2. The distillable entanglement of a state |i) is at
least S(py ).
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Entanglement distillation

Proposition 5.2. The distillable entanglement of a state |i) is at
least S(py ).

Proof. Suppose that Alice and Bob share

[)®T = Z \/p(X1)p(X2)...p(Xm)|X1X2...Xm>A®|X1X2...Xm>B.

X1,X2,..,Xm
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Entanglement distillation

Proposition 5.2. The distillable entanglement of a state |i) is at
least S(py ).

Proof. Suppose that Alice and Bob share

[)®T = Z \/p(X1)p(X2)...p(Xm)|X1X2...Xm>A®|X1X2...Xm>B.

X1,X2,..,Xm

Alice performs a projective measurement with Kraus operators

|_|0 = Z |X1X2...Xm><X1X2...Xm|

X e—typical

and My = ]l—rlo.
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Entanglement distillation

[y )®m = Z \/p (x1)p(x2) ... p(Xm) IX1 X2 . . XY QX1 Xo . .. Xm)E .

X1,X2,...,Xm

Mo = Z IX1X2 ... Xm){X1X2 . .. Xm|

X e—typical
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Entanglement distillation

[y )®m = Z \/p (x1)p(x2) ... p(Xm) IX1 X2 . . XY QX1 Xo . .. Xm)E .

X1,X2,...,Xm

Mo = Z IX1X2 ... Xm){X1X2 . .. Xm|

X e—typical

Exercise: evaluate pp = Tr[(Mo ® 1) [}y
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Entanglement distillation

[y )®m = Z \/p (x1)p(x2) ... p(Xm) IX1 X2 . . XY QX1 Xo . .. Xm)E .

X1,X2,...,Xm

Mo = Z IX1X2 ... Xm){X1X2 . .. Xm|

X e—typical
Probability of measurement outcome 0:

po=Tr(Me@ D) IMW™ = > p(x1)p(xe) ... p(xm)

X e—typical
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Entanglement distillation

[y )®m = Z \/p (x1)p(x2) ... p(Xm) IX1 X2 . . XY QX1 Xo . .. Xm)E .

X1,X2,...,Xm

Mo = Z IX1X2 ... Xm){X1X2 . .. Xm|

X e—typical
Probability of measurement outcome 0:

po=Tr(Me@ D) IMW™ = > p(x1)p(xe) ... p(xm)

X e—typical

Part (1) of theorem of typical sequences: py > 1 — § for m large
enough
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Entanglement distillation

Mo = Z IX1X2 ... Xm){X1X2 . .. Xm|

X e—typical
Post-measurement state of Alice and Bob:

lpm) = \/__ (Mo ® 1) )" =

Z \/P (x1)p(x2) ... p(xm) IX1 X2 . .. Xm)* @ |x1X2 . .. Xpm)B
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Entanglement distillation
Post-measurement state of Alice and Bob:

¢y = ——= (Mo ® L) W)*™ =

\/_
Z \/p (x1)P(x2) ... p(xm) X1 X2 ... Xm)* ® X1 X2 . .. Xpm)®
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Entanglement distillation
Post-measurement state of Alice and Bob:

1
pm) = —= (Mo ® 1) [Y)*™ =
m \/is— ( )
Z \/p (x1)P(x2) ... p(xm) X1 X2 ... Xm)* ® X1 X2 ...
X e—typical

¢ By definition of e-typical sequences:

p(x1)P(x2) ... p(xm) < 2~ MH(P(X))=€) — o=m(S(ey)=e)

B
Xm)
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Entanglement distillation
Post-measurement state of Alice and Bob:

]
6y = —= (Mo ® 1) |Y)®™ =
m \/is— ( )
Z \/p (x1)P(x2) ... p(xm) X1 X2 ... Xm)* ® X1 X2 . .. Xpm)®
X e—typical

¢ By definition of e-typical sequences:

p(x1)P(x2) ... p(xm) < 2~ MH(P(X))=€) — o=m(S(ey)=e)

¢ Part (1) of theorem of typical sequences: py > 1 — ¢ for any
6 > 0 and m large enough
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Entanglement distillation
Post-measurement state of Alice and Bob:

]
6y = —= (Mo ® 1) |Y)®™ =
m \/is— ( )
Z \/p (x1)P(x2) ... p(xm) X1 X2 ... Xm)* ® X1 X2 . .. Xpm)®
X e—typical

¢ By definition of e-typical sequences:

p(x1)P(x2) ... p(xm) < 2~ MH(P(X))=€) — o=m(S(ey)=e)
¢ Part (1) of theorem of typical sequences: py > 1 — ¢ for any
6 > 0 and m large enough
® = largest Schmidt coefficient of |¢;,) is at most
2-m(S(py)—€)
1-6
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

o-m(S(py)-€)
1-6
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

2-m(S(py)—¢)
1-6
Choose n such that
2-m(S(py)—€)
1-6
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

2-m(S(py)—¢)
1-6
Choose n such that
2-m(S(py)—€)
1-6

* Schmidt coefficients of |¢7,) correspond to eigenvalues of py
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

2-m(S(py)—€)
1-6
Choose n such that
2-m(S(py)—€)
1-6

* Schmidt coefficients of |¢7,) correspond to eigenvalues of py
* = all eigenvalues of py_are at most 27"
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

o-m(S(py)-€)
1-6

Choose n such that
2-m(S(py)—€)

1-06

* Schmidt coefficients of |¢7,) correspond to eigenvalues of py
* = all eigenvalues of py_are at most 27"

° = ’T¢;n is majorized by the vector

V=(2"27"...,27"0,..,0)
N —————————e

2N times
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

o-m(S(py)-€)
1-6

Choose n such that
2-m(S(py)—€)

1-06

= 1, is majorized by the vector
V= (2"27",...,270,...,0)
—— ————
2" times

® Theorem 2.1.: |¢7,) can then be converted into n singlets via
LOCC
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Entanglement distillation
Largest Schmidt coefficient of |¢7,) is at most

2-m(S(py)—€)
1-6
Choose n such that
2-m(S(py)—€)
1-6

= 1, is majorized by the vector

v=(2"27"..,27"0,...,0)
R
2" times
® Theorem 2.1.: |¢7,) can then be converted into n singlets via
LOCC

® ¢ and ¢ can be chosen arbitrary small = n/m arbitrary close
to S(py) in the limit of large m

Q.E.D.
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Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py)-
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Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py)-

Proposition 5.2. The distillable entanglement of a state |y) is at
least S(py ).
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Entanglement distillation and dilution

Proposition 5.1. The entanglement cost of a state |) is at most
S(py)-

Proposition 5.2. The distillable entanglement of a state |y) is at
least S(py ).

Theorem 5.1. The distillable entanglement and entanglement
cost of a state i) are equal to S(py).
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

® Proposition 5.1. = Alice and Bob can convert |W‘>®k into
ly)®™ such that k/m ~ S(py)
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

® Proposition 5.1. = Alice and Bob can convert |W‘>®k into
ly)®™ such that k/m ~ S(py)

* [y)®™ is then converted into [W-)®" with 2 ~ S > S(py)
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

® Proposition 5.1. = Alice and Bob can convert |W‘>®k into
ly)®™ such that k/m ~ S(py)

* [y)®™ is then converted into [W-)®" with 2 ~ S > S(py)

e In summary: Alice and Bob converted [W™)®¥ into [W—)®",
where

23/29



Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

e Alice and Bob converted |W~)® into [W~)®", where
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

e Alice and Bob converted |W~)® into [W~)®", where

S
S(oy)

¢ Contradiction: Increasing the number of singlets via LOCC is
impossible!

n~=mS =Kk > K
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Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

e Alice and Bob converted |W~)® into [W~)®", where

nx=mS =k S > K
S(py)
¢ Contradiction: Increasing the number of singlets via LOCC is

impossible!

* = assumption was wrong = distillable entanglement of i) is
equal to S(py)

23/29



Entanglement distillation and dilution

Theorem 5.1. The distillable entanglement and entanglement
cost of a state [¢)*8 are equal to S(py).

Proof. Assume that there exists an LOCC protocol converting [)®™
into [W™)®" such that 22 ~ S > S(py)

e Alice and Bob converted |W~)® into [W~)®", where

nx=mS =k S > K
S(py)
¢ Contradiction: Increasing the number of singlets via LOCC is

impossible!

* = assumption was wrong = distillable entanglement of i) is
equal to S(py)

* Proof for entanglement cost by similar reasoning. Q.E.D.
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@ Entanglement distillation and dilution

LOCC and separable operations
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LOCC and separable operations

* Any LOCC protocol is a separable operation:

0% = ALoce (PAB) = Z Ai® B:',O'L\BA,-T ® B,-T
i
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LOCC and separable operations

* Any LOCC protocol is a separable operation:

0% = ALoce (PAB) = Z Ai® B:',O'L\BA,-T ® B,-T
i

® Completeness condition:

D AA®BB =1as
i
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LOCC and separable operations

* Any LOCC protocol is a separable operation:

0% = ALoce (PAB) = Z Ai® B:',O'L\BA,-T ® B,-T
i

® Completeness condition:

D AA®BB =1as
i

* Not every separable operation is an LOCC

25/29



Stochastic LOCC

¢ Stochastic LOCC transformation:

’
P8 - 5 Z A ® Bp"BAT B
I
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Stochastic LOCC

¢ Stochastic LOCC transformation:

’
P8 - 5 > AeBp*PA 0 B]
i

¢ (In)completeness condition:

> AA®BB < 1as
i
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Stochastic LOCC

¢ Stochastic LOCC transformation:

’
P8 - 5 > AeBp*PA 0 B]
i

¢ (In)completeness condition:

> AA®BB < 1as
i
® Probability of the transformation:

p=Tr|> A®Bp"®A ® B
i
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Stochastic LOCC

¢ Stochastic LOCC transformation:

P8 - :—) Z Ai®Bp*tAT © B
¢ (In)completeness condition:
> AA®BB < 1as
i
® Probability of the transformation:

p=Tr|> A®Bp"®A ® B
i

e Stochastic LOCC transformation mapping Hap onto the
space of two qubits: A; is a 2 X da rectangular matrix, B; is a
2 X dp rectangular matrix
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Outline

@ Entanglement distillation and dilution

Mixed state entanglement distillation
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Mixed state entanglement distillation
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Mixed state entanglement distillation

Yl Bob
‘ . - Entanglement distillation
ﬁ S A4 | for mixed states: convert-
~———3 L ing m copies of p into n
| ; | singlets in the limit m — oo
] .
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Mixed state entanglement distillation

//J,,/Wg,(, Lot

A - Entanglement distillation

[ S for mixed states: convert-

[ [, ) ing m copies of p into n

. ; \ singlets in the limit m — oo

| ‘

‘\ )< L Exercise: can a separable

N N/ state psep = 2 PilYi)(Yil ®
‘ \ |pi){¢i| be distilled into sin-

glets?
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
e Section 5.5.: stochastic LOCC brings p®™ to

]
o= > A®Bp*A @B/
j

with probability p = Tr[3}; Aj ® Bp® A’ ® B]]
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
e Section 5.5.: stochastic LOCC brings p®™ to
o= ;10 Z,: Ai® Bp®"A @ B/
with probability p = Tr[Y; A ® B,p®mA]T ® BIT]

e |f p is separable = p®™ is separable = o is separable
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