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Advanced quantum information

• Every Wednesday 15:15 – 17:00

• Literature:
• Nielsen and Chuang, Quantum Computation and Quantum

Information, Cambridge University Press (2012)
• Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,

865 (2009)

• Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

• 2. Homework sheet to be submitted via email by 5. April
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Outline

1 Entanglement distillation and dilution
Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement

2 Quantification of entanglement

3 Entanglement of formation Ef

Convexity of Ef

Monotonicity of Ef under local measurements
Monotonicity of Ef under LOCC
Evaluating Ef for two qubits
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Mixed state entanglement distillation

Entanglement distillation
for mixed states: convert-
ing m copies of ρ into n
singlets in the limit m → ∞

Exercise: can a separable
state ρsep =

∑
i pi |ψi〉〈ψi | ⊗

|φi〉〈φi | be distilled into sin-
glets?
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

• Section 5.5.: stochastic LOCC brings ρ⊗m to

σ =
1
p

∑
j

Aj ⊗ Bjρ
⊗mA†j ⊗ B†j

with probability p = Tr[
∑

j Aj ⊗ Bjρ
⊗mA†j ⊗ B†j ]

• If ρ is separable⇒ ρ⊗m is separable⇒ σ is separable
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
• Assume ρ can be distilled into singlets

• ⇒ There exists a stochastic LOCC protocol bringing ρ⊗m

arbitrary close to a singlet for large m

• There must exist a stochastic LOCC protocol transforming
ρ⊗m into an entangled two-qubit state σ2q
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⊗mA†j ⊗ B†j

• Probability: p = Tr[
∑

j Aj ⊗ Bjρ
⊗mA†j ⊗ B†j ]

• Aj and Bj : 2 × dA and 2 × dB rectangular matrices
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
• ρ distillable⇒ σ2q = 1

p
∑

j Aj ⊗ Bjρ
⊗mA†j ⊗ B†j is entangled
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Proof.
• ρ distillable⇒ σ2q = 1

p
∑

j Aj ⊗ Bjρ
⊗mA†j ⊗ B†j is entangled

• ⇒ σi = 1
pi

Ai ⊗ Biρ
⊗mA†i ⊗ B†i is entangled for some i

• Probability: pi = Tr[Ai ⊗ Biρ
⊗mA†i ⊗ B†i ]

• Exercise: prove that for entangled state σ2q there must exist i
such that σi is entangled

• Solution: note that σ2q = 1∑
j pj

∑
i piσi

⇒ σ2q is separable if all σi are separable
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
• It holds

σi =
1
pi

Ai ⊗ Biρ
⊗mA†i ⊗ B†i

=
1
pi

Ai ⊗ Bi

(
PA ⊗ PBρ

⊗mPA ⊗ PB

)
A†i ⊗ B†i

• σi is entangled⇒

µ =
PA ⊗ PBρ

⊗mPA ⊗ PB

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]

must be entangled
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distilled into singlets.

Proof.

µ =
PA ⊗ PBρ

⊗mPA ⊗ PB

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]

• Consider orthonormal product basis |fi〉 ⊗ |gk 〉 such that
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PA = |f0〉〈f0|+ |f1〉〈f1|

PB = |g0〉〈g0|+ |g1〉〈g1|

• In the basis |fi〉 ⊗ |gk 〉 the state µ takes the form

µ =
PA ⊗ PBρ
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. . .
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µ =
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⊗mPA ⊗ PB

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]
=


τ2q 0 · · · 0
0 0
...

. . .

0 0


and τTA

2q must have negative eigenvalues

There exists a vector

|ψ〉 =
1∑

i,k=0

cik |fi〉 |gk 〉

such that 〈ψ|τTA
2q |ψ〉 < 0
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

µ =
PA ⊗ PBρ

⊗mPA ⊗ PB

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]
=


τ2q 0 · · · 0
0 0
...

. . .

0 0


and τTA

2q must have negative eigenvalues

We have 〈ψ|τTA
2q |ψ〉 = 〈ψ|µTA |ψ〉, which implies that

〈ψ|µTA |ψ〉 < 0
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, 〈ψ|µTA |ψ〉 < 0

The following equalities hold:(
PA ⊗ PBρ

⊗mPA ⊗ PB

)TA
= PA ⊗ PB

(
ρ⊗m

)TA
PA ⊗ PB ,

PA ⊗ PB |ψ〉 = |ψ〉

We obtain:

0 > 〈ψ|µTA |ψ〉 =
〈ψ| (PA ⊗ PBρ

⊗mPA ⊗ PB)TA |ψ〉

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]
=

=
〈ψ|PA ⊗ PB (ρ⊗m)TA PA ⊗ PB |ψ〉

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ]
=

〈ψ| (ρ⊗m)TA |ψ〉

Tr [PA ⊗ PBρ⊗mPA ⊗ PB ] 8 / 36
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
We have 0 > 〈ψ| (ρ⊗m)TA |ψ〉

Exercise: prove that ρTA is not positive semidefinite

Solution:
• for two matrices MA1B1

1 and MA2B2
2 it holds that(

MA1B1
1 ⊗MA2B2

2

)TA1A2 =
(
MA1B1

1

)TA1 ⊗
(
MA2B2

2

)TA2 ,

and similar for more than 2 matrices
• ⇒ (ρ⊗m)TA =

(
ρTA

)⊗m

• ⇒ ρTA must have negative eigenvalues
Q.E.D.
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Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

• Separable states have positive partial transpose

• ⇒ Separable states cannot be distilled

• Are there entangled states which cannot be distilled?

• Independent entanglement detection criterion required
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Matrix realignment criterion

• Consider a 2 × 2 matrix

M =

(
M00 M01

M10 M11

)

• We can “vectorize” M by defining

~M = (M00,M10,M01,M11)T

• Similar for larger dimensions
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Matrix realignment criterion

• Consider two-qubit density matrix

ρ =


ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33

 =

(
X Y
Y† Z

)

• Realigned matrix

ρ̃ =


~XT

−→
Y†T

~YT

~ZT

 =


ρ00 ρ10 ρ01 ρ11

ρ20 ρ30 ρ21 ρ31

ρ02 ρ12 ρ03 ρ13

ρ22 ρ32 ρ23 ρ33


• Similar for larger dimensions
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Matrix realignment criterion

• Trace norm of ρ̃ can be used to detect entanglement

• Trace norm of M:

||M||1 = Tr
√

M†M =
∑

i

si

• Triangle inequality:

||A + B ||1 ≤ ||A ||1 + ||B ||1

• Trace norm is absolutely homogeneous:

||aM||1 = |a | · ||M||1

for any matrix M and any a ∈ C
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Matrix realignment criterion
Proposition 5.3. Any separable state ρ fulfills ||ρ̃||1 ≤ 1.

Proof.

ρ̃sep =
∑

i

pi
−→
ψi ·
−→
φi

T

Trace norm of ρ̃sep:

||ρ̃sep||1 =

∥∥∥∥∥∥∥∑i

pi
−→
ψi ·
−→
φi

T

∥∥∥∥∥∥∥
1

≤
∑

i

pi

∥∥∥∥−→ψi ·
−→
φi

T
∥∥∥∥

1
= 1

Q.E.D.
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Bound entanglement

For dA = dB = 3 and 0 ≤ a ≤ 1 consider

ρa =
1

8a + 1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1−a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2 0 1+a
2



• ρa is PPT for all 0 ≤ a ≤ 1

• ||ρ̃||1 > 1 for all 0 < a < 1

• ⇒ ρa is bound entangled for 0 < a < 1
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Bound entanglement

In summary:
• All separable states and some entangled states have positive

partial transpose (PPT)

• PPT states cannot be distilled into singlets

• There are PPT entangled states⇒ these states require
singlets to be created, but cannot be converted into singlets

• These states are called bound entangled
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Entanglement quantification

How much entanglement is in a given quantum state ρ?

Entanglement measure: function E(ρ) with following properties

1 E(ρ) ≥ 0, and equality holds if ρ is separable,

2 E does not increase under local operations and classical
communication:

E(ΛLOCC[ρ]) ≤ E(ρ)

for any LOCC protocol ΛLOCC

Theorem 2.1.: |Φ+
d 〉 = 1√

d

∑
i |ii〉 can be converted into any other

state ρ via LOCC⇒ |Φ+
d 〉 has maximum entanglement

E (ρ) = E
(
ΛLOCC

[
|Φ+

d 〉〈Φ
+
d |

])
≤ E(|Φ+

d 〉)
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Entanglement of formation

• Entanglement of formation for pure states:

Ef (|ψ〉
AB) = S(ρA ),

where ρA = TrB [|ψ〉〈ψ|AB ]

• For mixed states:

Ef (ρ
AB) = min

∑
i

piEf (|ψi〉
AB)

• Minimum is taken over all decompositions {pi , |ψi〉
AB } suth that

ρAB =
∑

i pi |ψi〉〈ψi |
AB

• Interpretation: minimal average entanglement required to
create ρAB
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AB) = 0 for any sepa-
rable state σAB

Solution:
• For any decomposition {pi , |ψi〉

AB } the average entanglement∑
i piEf (|ψi〉

AB) is nonnegative
• For a separable state σAB there exists a decompotision into

product states |ψi〉
AB = |αi〉

A ⊗ |βi〉
B with Ef (|ψi〉

AB) = 0

22 / 36



Entanglement of formation

Next goal: proving that Ef does not increase under LOCC

For this we will prove that:
• Ef is convex

• Ef does not increase on average under local measurements
for
• pure states
• mixed states

⇒ in combination, this will prove that Ef does not increase under
LOCC
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Convexity of Ef
Proposition 6.1. Entanglement of formation is convex:

Ef

∑
i

piρ
AB
i

 ≤∑
i

piEf

(
ρAB

i

)
.
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AB with the

property that

Ef (ρ
AB
i ) =

∑
j

qijEf

(
|ψij〉

AB
)
.

• Defining σAB =
∑

i piρ
AB
i we obtain

σAB =
∑

i

piρ
AB
i =
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ij
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• Ef is the minimal average entanglement⇒

Ef

(
σAB

)
≤

∑
i

piqijEf

(
|ψij〉

AB
)

• In summary: Ef

(∑
i piρ

AB
i

)
= Ef

(
σAB

)
≤

∑
i piEf

(
ρAB

i

)
. Q.E.D.
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Monotonicity of Ef under local measurements

Proposition 6.2. For pure states |ψ〉AB entanglement of formation
does not increase on average under local measurements on
Alice’s side: ∑

i

piEf (|φi〉
AB) ≤ Ef (|ψ〉

AB)

with

pi = Tr
[
Ki ⊗ 1 |ψ〉〈ψ|

AB K †i ⊗ 1
]
,

|φi〉
AB =

1
√

pi
(Ki ⊗ 1) |ψ〉AB .
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Entanglement of formation

Proof.
• Local measurements on Alice’s side do not change the state

of Bob

• Thus

ρB = TrA

[
|ψ〉〈ψ|AB

]
=

∑
i

pi TrA

[
|φi〉〈φi |

AB
]

=
∑

i

piσ
B
i

with σB
i = TrA

[
|φi〉〈φi |

AB
]

• By definition of Ef we have

Ef (|ψ〉
AB) = S(ρB),

∑
i

piEf (|φi〉
AB) =

∑
i

piS(σB
i ).
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Entanglement of formation
Proof.

ρB =
∑

i

piσ
B
i , σB

i = TrA

[
|φi〉〈φi |

AB
]

Ef (|ψ〉
AB) = S(ρB),

∑
i

piEf (|φi〉
AB) =

∑
i

piS(σB
i )

• von Neumann entropy is concave:
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Monotonicity of Ef under local measurements

Extension to mixed states ρAB and local Kraus operators Ki :

pi = Tr
[
Ki ⊗ 1ρ

ABK †i ⊗ 1
]

σAB
i =

1
pi

Ki ⊗ 1ρ
ABK †i ⊗ 1

Proposition 6.3. For all mixed states ρAB the entanglement of
formation does not increase on average under local measurements
on Alice’s side: ∑

i

piEf (σ
AB
i ) ≤ Ef (ρ

AB).
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Monotonicity of Ef under LOCC

Proposition 6.3. For all mixed states ρAB the entanglement of
formation does not increase on average under local measurements
on Alice’s side: ∑

i

piEf (σ
AB
i ) ≤ Ef (ρ

AB).

Generalizes to local measurements on Alice’s and Bob’s side, with
exchange of measurement outcomes via classical channel

Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:∑

i

piEf (σ
AB
i ) ≤ Ef (ρ

AB).
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Monotonicity of Ef under LOCC
Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:∑

i

piEf (σ
AB
i ) ≤ Ef (ρ

AB).

Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Ef (ΛLOCC[ρ]) ≤ Ef (ρ)

for any LOCC protocol ΛLOCC.
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Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Ef (ΛLOCC[ρ]) ≤ Ef (ρ)

for any LOCC protocol ΛLOCC.

Exercise: prove this theorem from Proposition 6.4. by using con-
vexity of Ef
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Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Ef (ΛLOCC[ρ]) ≤ Ef (ρ)

for any LOCC protocol ΛLOCC.

Proof.
Let ΛLOCC be an LOCC protocol leading to states σAB

i with proba-
bility pi when applied to a state ρAB :

ΛLOCC[ρAB ] =
∑

i

piσ
AB
i .
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Evaluating Ef for two qubits

• Concurrence of a two-qubit state ρAB :

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4}

• λi : square roots (in decreasing order) of the eigenvalues of
ρρ̃, with

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),

where ρ∗ denotes entry-wise complex conjugation

• Entanglement of formation:

Ef (ρ
AB) = h

1 +
√

1 − C2(ρAB)

2


with h(x) = −x log2 x − (1 − x) log2(1 − x)
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