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Advanced quantum information

Every Wednesday 15:15 - 17:00

® Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

¢ 2. Homework sheet to be submitted via email by 5. April
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Outline

@ Entanglement distillation and dilution
Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement

@® Quantification of entanglement

® Entanglement of formation E;
Convexity of E¢
Monotonicity of E; under local measurements
Monotonicity of Ef under LOCC
Evaluating E; for two qubits
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Mixed state entanglement distillation
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Mixed state entanglement distillation

e . B Entanglement distillation
[ g LN for mixed states: convert-
‘ 35— [ ing m copies of p into n
€ j, f :w singlets in the limit m — oo
] | |
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Mixed state entanglement distillation
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A - Entanglement distillation

[ S for mixed states: convert-

[ [, ) ing m copies of p into n
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‘\ )< L Exercise: can a separable

N N/ state psep = 2 PilYi)(Yil ®
‘ \ |pi){¢i| be distilled into sin-

glets?
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
e Section 5.5.: stochastic LOCC brings p®™ to

]
o= > A®Bp*A @B/
j

with probability p = Tr[3}; Aj ® Bp® A’ ® B]]
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Mixed state entanglement distillation

Separable states cannot be distilled into singlets:
e Section 5.5.: stochastic LOCC brings p®™ to
o= ;10 Z,: Ai® Bp®"A @ B/
with probability p = Tr[Y; A ® B,p®mA]T ® BIT]

e |f p is separable = p®™ is separable = o is separable
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
® Assume p can be distilled into singlets

® = There exists a stochastic LOCC protocol bringing p®™
arbitrary close to a singlet for large m

® There must exist a stochastic LOCC protocol transforming
p®™ into an entangled two-qubit state 024

8/36



Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
® Section 5.5.: stochastic LOCC transformation has the form

’
o2 =3 D A®Bp°A @B
7
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
® Section 5.5.: stochastic LOCC transformation has the form

’
o2 =3 D A®Bp°A @B
7

* Probability: p = Tr[Z; A;® Bp®"A’ ® B]]
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
® Section 5.5.: stochastic LOCC transformation has the form

’
o2 =3 D A®Bp°A @B
7

* Probability: p = Tr[Z; A;® Bp®"A’ ® B]]

e A and Bj: 2 X da and 2 x dg rectangular matrices
] j
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
* pdistillable = o2g = § % A;® Bp®"Al @ B/ is entangled
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
e pdistillable = 0pq = 1 3. A ® Bp®"A' ® B! is entangled
q p &~ ] j j

* =g = %A; ® B,'p@””AI.T ® B,.T is entangled for some i
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
e pdistillable = 0pq = 1 3. A ® Bp®"A' ® B! is entangled
q p &~ ] j j

°* == %A; ® B,'p@””AI.T ® B,.T is entangled for some i
* Probability: p; = Tr[A; ® Bip®"A' ® B!]

* Exercise: prove that for entangled state 024 there must exist i
such that o7 is entangled
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
e pdistillable = 0pq = 1 3. A ® Bp®"A' ® B! is entangled
q p &~ ] j j

=0 = %Ai ® B,'p@””AI.T ® B,.T is entangled for some i

Probability: p; = Tr[A; ® Bip®"A' ® B!]

Exercise: prove that for entangled state o4 there must exist /
such that o7 is entangled

Solution: note that 054 = 21'_;3,' 3 pic
I
= 02q is separable if all o-; are separable
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
° o= ;_;A" ® B,-,o®’”A,.T ® B,.T is entangled for some i

e A; and B;: rectangular 2 X da and 2 x dg matrices
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Mixed state entanglement distillation
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Proof.
° o= ;_;A" ® B,-,o®’”A,.T ® B,.T is entangled for some i

e A; and B;: rectangular 2 X da and 2 x dg matrices

e |t follows:
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
° o= ;_;A" ® B,-,o®’”A,.T ® B,.T is entangled for some i

e A; and B;: rectangular 2 X da and 2 x dg matrices

e |t follows:

Aj = 10){aol + [1)Xa1]
Bi = 10){Bol + 11){B1l

® |a;) € Ha and |B;) € Hp are (possibly unnormalized) vectors
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

Ai = [0)ao| + [1){ax]
Bi = [0){Bol + 11)¢B1]

® P,: projector onto the subspace spanned by |ag) and |a1)

8/36



Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

Ai = [0)ao| + [1){ax]
Bi = [0){Bol + 11)¢B1]

® P,: projector onto the subspace spanned by |ag) and |a1)

® Pg: projector onto the subspace spanned by |8p) and |81)

8/36



Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

Ai = [0)ao| + [1){ax]
Bi = [0){Bol + 11)¢B1]

® P,: projector onto the subspace spanned by |ag) and |a1)
® Pg: projector onto the subspace spanned by |8p) and |81)

® It holds
’
oi=A® Bip® Al ® Bf
1

]
= A8 (Pa® Psp®"Pa® Pg) Al ® B
1
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
* |t holds

]
oi= S A® Bip® Al ® Bf
i

]
= —Ai®B;(Pa®Ppp®"Pa® Pg) A ®B]

pi
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
* |t holds

]
oi= S A® Bip® Al ® Bf
i

1
= EA,- ® B(Pa® Pep®"Pa ® Pg) Al © B
i
® ojis entangled =
B Ps® P5p®mPA ® Pg
" Tr[Pa ® Pgp®Pa ® Pg]

u

must be entangled
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
PA ® PBp®mPA ® PB

" Tr[Pa ® Pap® P @ Pg]

U

¢ Consider orthonormal product basis |f;) ® |gk) such that

Pa = |fo){fol + |1 ){f1]
Pg = 190){gol + 191 (g1
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
PA ® PBp®mPA ® PB

" Tr[Pa ® Pap® P @ Pg]

U

¢ Consider orthonormal product basis |f;) ® |gk) such that
Pa = |fo){fol + [f1 )]
Ps = 1g0){gol + 191 (g1l

¢ In the basis |f;) ® |gk) the state u takes the form

Tog 0 -+ 0
_ Pa®Pgp®"PaePg | 0 0
 Tr[Pa®Pgp®Pa®Pg]

u
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
T2q 0 O
_ Pa®Pgp®™PaePg | 0 0
K 7 [Pa® Pep®™Pa ® Ps] ,
0 0

e For evaluating u™ we can focus on 7.4
% 2q
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
T2q 0 O
_ Pa®Pgp®™PaePg | 0 0
K 7 [Pa® Pep®™Pa ® Ps] ,
0 0

For evaluating 1" we can focus on TZTS

If T;—Q is positive = 12 is separable (Theorem 3.2.)

that 4 must be entangled!

= T;é must have negative eigenvalues

= Contradiction: u is separable but we showed previously
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
T2q 0 O
_ Pa®Pgp®™PaePg | 0 0
K 7 [Pa® Pep®™Pa ® Ps]
0 0

and T;—S must have negative eigenvalues
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
T2q 0 O
_ Pa®Pgp®™PaePg | 0 0
K 7 [Pa® Pep®™Pa ® Ps]
0 0

and T;—S must have negative eigenvalues

There exists a vector

1
)= > ck gk

i,k=0

such that (wlrzTgll,//) <0
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
T2q 0 O
_ Pa®Pgp®™PaePg | 0 0
K 7 [Pa® Pep®™Pa ® Ps]
0 0

and T;—S must have negative eigenvalues
We have (yir,/1y) = (lu"4Iy), which implies that

W™y < 0
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

. Pa ® Pgp®"Pa ® Pg
CTr [Pa ® Pgp®mPa ® Pg]’

7 W™y <0
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

. Pa ® Pgp®"Pa ® Pg
CTr [Pa ® Pgp®mPa ® Pg]’

7 W™y <0

The following equalities hold:

(Pa ® Pgo™™Pa & Pg)™ = P ® Pg (0°™) " Pa ® Pa,

Pa ® Pgly) = )
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.

. Ps® PBp®mPA ® Pg
T [PA ® Pgp®MPs ® PB] ’

7 W™y <0

The following equalities hold:

(Pa ® Pgo™™Pa & Pg)™ = P ® Pg (0°™) " Pa ® Pa,

Pa ® Pgly) = )
We obtain:

W (Pa ® Pgp®"Pa ® Pg)™ ) _
Tr [PA ® Pgp®MPs ® PB]

_ WIPa®Ps (0*™) " Pa®Palyy _  wl(e®™™)™

0> (Ylu™y) =

Tr [Pa ® Pgp®"Pa ® Ppg| ~ Tr[Pa® Pgp®mPa ® Pg|
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Mixed state entanglement distillation
Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
We have 0 > (| (0°™) ™ |y)
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Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
We have 0 > (| (0°™) ™ |y)

Exercise: prove that p'4 is not positive semidefinite
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Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
We have 0 > (| (0°™) ™ |y)

Exercise: prove that p'4 is not positive semidefinite

Solution:
. A1B1 AZB2
e for two matrices M1 and M2 it holds that

(M:h Bi ® M?sz)TAMz _ (M:\1B1)TA1 ® (M?ZBZ)TAz ,

and similar for more than 2 matrices
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Proof.
We have 0 > (| (0°™) ™ |y)

Exercise: prove that p'4 is not positive semidefinite

Solution:
. A1B1 AZB2
e for two matrices M1 and M2 it holds that

(M:h Bi ® M?sz)TAMz _ (M:\1B1)TA1 ® (M?ZBZ)TAz ,

and similar for more than 2 matrices
o — (p®m)TA _ (pTA)®m
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Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

Proof.
We have 0 > (| (0°™) ™ |y)

Exercise: prove that p'4 is not positive semidefinite

Solution:
. A1B1 AZB2
e for two matrices M1 and M2 it holds that

(M:h Bi ® M?sz)TAMz _ (M:\1B1)TA1 ® (M?ZBZ)TAz ,

and similar for more than 2 matrices
o — (p®m)TA _ (pTA)®m

* = p’4 must have negative eigenvalues
Q.E.D.
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Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.
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Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be
distilled into singlets.

® Separable states have positive partial transpose
® = Separable states cannot be distilled
¢ Are there entangled states which cannot be distilled?

¢ Independent entanglement detection criterion required
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Outline

@ Entanglement distillation and dilution

Matrix realignment criterion

@® Quantification of entanglement

® Entanglement of formation E;
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Matrix realignment criterion

e Consider a 2 x 2 matrix

Moo Mo+ )
M =
( Mio M4
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Matrix realignment criterion

e Consider a 2 x 2 matrix

Moo Mo+ )
M =
( Mio M4

* We can “vectorize” M by defining

M = (Moo, M1, Mo, My1)T

¢ Similar for larger dimensions
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Matrix realignment criterion

® Consider two-qubit density matrix

P00  Po1 P02 P03
o= p1o p11 P12 p13|_ X Y
P20 P21 P22 P23 Yt z

P30 P31 P32 P33
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Matrix realignment criterion

® Consider two-qubit density matrix

P00  Po1 P02 P03
o= p1o p11 P12 p13|_ X Y
P20 P21 P22 P23 Yt z

P30 P31 P32 P33

¢ Realigned matrix

XT

BN Poo P10 Po1 P11
5= YT | _| p2o pso p21 ps

yT P02 P12 P03 P13

z7 P22 P32 P23 P33
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Matrix realignment criterion

® Consider two-qubit density matrix

P00  Po1 P02 P03
o= p1o p11 P12 p13|_ X Y
P20 P21 P22 P23 Yt z

P30 P31 P32 P33

¢ Realigned matrix

XT

BN PO0 P10 PoO1 P11
5= YT | _| p2o pso p21 ps

yT P02 P12 P03 P13

27 P22 P32 P23 P33

¢ Similar for larger dimensions
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Matrix realignment criterion

* Trace norm of p can be used to detect entanglement
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Matrix realignment criterion

* Trace norm of p can be used to detect entanglement

® Trace norm of M:

IM||{ = Tr VMM = Z Si
7
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Matrix realignment criterion

* Trace norm of p can be used to detect entanglement

® Trace norm of M:

IMly = Tr VMM = > s,
i

¢ Triangle inequality:

lA + Blls < llAll+ + lIBIl1
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Matrix realignment criterion

* Trace norm of p can be used to detect entanglement

® Trace norm of M:
Ml =Tr VMM =3 s
i
¢ Triangle inequality:
lIA + Blls < lIAll+ +1IBll1
® Trace norm is absolutely homogeneous:
llaM|l1 = lal - [IM]l1

for any matrix Mand any a € C
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.
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Proof.
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.
Proof.
® Let p be a pure product state:
p =)l @ lp)el

® “Vectorize” the matrices | )| and |¢){¢| with the
corresponding vectors ¢ and ¢

® |t holds
Wl = lgl =1
* Realigned matrix g can be written as

-

p=v-¢
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Matrix realignment criterion

Proposition 5.3. Any separable state p fulfills ||p||1 < 1.

Proof.
® Let p be a pure product state:

p = )Yl ® |¢) el

® “Vectorize” the matrices | )| and |¢){¢| with the
corresponding vectors ¢ and ¢

It holds
[ = |p| =1

Realigned matrix g can be written as

-

p=v-¢

Trace norm of g is given as ||p|ly = 1
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.

Proof.
¢ Consider a separable state

Psep = Z Pi Wi Wil @ |i)(h
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¢ Consider a separable state

Psep = Z Pi Wi Wil @ |i)(h

* Realigned matrix pgp takes the form
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.

Proof.
¢ Consider a separable state

Psep = Z Pi Wi Wil @ |i)(h

* Realigned matrix pgp takes the form

— - -
Psep = Z pii - ¢iT
i

. ﬁ, and 5), “vectorized” matrices )| and |¢;){¢il
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.

Proof.

— - -
Psep = Zpi'ﬁi : ¢iT
i
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Matrix realignment criterion
Proposition 5.3. Any separable state p fulfills ||p||1 < 1.

Proof.
_ - =
Psep = Zpi'ﬁi : ¢iT
i

Trace norm of peep:

— - >
losepllt = HZ pivi - diT
i

SV I
1 i

Q.E.D.
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Outline

@ Entanglement distillation and dilution

Bound entanglement
@® Quantification of entanglement

® Entanglement of formation E;
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Bound entanglement

Fordy = dg =3 and 0 < a < 1 consider
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Bound entanglement

Fordy = dg =3 and 0 < a < 1 consider

o
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® ppisPPTforall0<ac<i
® |pllt >1forall0<a<1

® = p,is bound entangled for0 < a < 1
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Bound entanglement

In summary:

¢ All separable states and some entangled states have positive
partial transpose (PPT)
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Bound entanglement

In summary:

¢ All separable states and some entangled states have positive
partial transpose (PPT)

® PPT states cannot be distilled into singlets

® There are PPT entangled states = these states require
singlets to be created, but cannot be converted into singlets

® These states are called bound entangled
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Outline

@® Quantification of entanglement
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Entanglement quantification

How much entanglement is in a given quantum state p?
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Entanglement quantification

How much entanglement is in a given quantum state p?

Entanglement measure: function E(p) with following properties
© E(p) > 0, and equality holds if p is separable,

@® E does not increase under local operations and classical
communication:

E(Acocclp]) < E(p)
for any LOCC protocol ALocc

Theorem 2.1.: |<bj> = \/la >.iliiy can be converted into any other
state p via LOCC = |<b:,“> has maximum entanglement

E (p) = E (Mocc [0 0(@51]) < E(10;))

19/36
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Entanglement of formation

* Entanglement of formation for pure states:

Ei(lv)y*®) = S(p?),

where p? = Trg[ly) (W8]
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* Entanglement of formation for pure states:
Er(10)*%) = S(0").
where p* = Trp[ly)(y|*®]

® For mixed states:

Er(p"B) = min Z PiEs(Iyiy*®)
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where p* = Trp[ly)(y|*®]
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Entanglement of formation

* Entanglement of formation for pure states:
Er(10)*%) = S(0").
where p* = Trp[ly)(y|*®]

® For mixed states:

Er(p"B) = min Z PiEs(Iyiy*®)

e Minimum is taken over all decompositions {p;, [})*Z} suth that
P8 = 3 pi liXwil*®

¢ Interpretation: minimal average entanglement required to
create p”B
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Ei(w)*®) = S(*),  Er(p"®) = min ) piEr(wi)*®)

Exercise: prove that E;(p"B) > 0, and E;(c*B) = 0 for any sepa-
rable state o8

Solution:
* For any decomposition {p;, |;)*5}
> piEr(1wi)*8) is nonnegative

the average entanglement
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Entanglement of formation

Ei(w)*®) = S(*),  Er(p"®) = min ) piEr(wi)*®)

Exercise: prove that E;(p"B) > 0, and E;(c*B) = 0 for any sepa-
rable state o8

Solution:
* For any decomposition {p;, |)*Z}
> piEr(1wi)*8) is nonnegative

* For a separable state B there exists a decompotision into
product states |y;)*8 = |a;)* ® |8;)8 with E(jy;)*B) = 0

the average entanglement

22/36
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Entanglement of formation

Next goal: proving that Ef does not increase under LOCC

For this we will prove that:
e E;is convex

® £; does not increase on average under local measurements
for

® pure states
® mixed states

= in combination, this will prove that E; does not increase under
LOCC

23/36
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Convexity of E;
Proposition 6.1. Entanglement of formation is convex:

E¢ [Z Pip,-AB] < Z piEf (P,AB) .
i i
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Convexity of E;
Proposition 6.1. Entanglement of formation is convex:

E¢ [Z Pip,-AB] < Z piEf (P,AB) .
f i
Proof.

* Consider a decomposition of p*8 = 3, g; i) (A8 with the
property that

E(p/®) = > aiEr (wi)™®).
j
* Defining 08 = 3, pip*B we obtain
o = > pipf® = ) piayluipwil®®
i ij

Z piEs (%) = Z pigiEr (wi)"®)
i i
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Convexity of E;
Proposition 6.1. Entanglement of formation is convex:

B[S 001°) < o 679).
i i
Proof.

O-AB = Z p,’p;-qB == Z plqu |w’]><wl]|AB
i ij

Z piEr (o) = Z pigiEr (lw*®)
i i
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Convexity of E;
Proposition 6.1. Entanglement of formation is convex:

E; [Z P:PAB] < Z piEt (P,AB
i
Proof.
= Z pipf = Z pigi i)l *®
i ij
Z piE¢ (p,AB) = Z piqiEs (I¢’ij)AB)
i ij
® F£;is the minimal average entanglement =

Ef ZplquEf |¢lj> )
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Convexity of E;
Proposition 6.1. Entanglement of formation is convex:

E; [Z P:PAB] < Z piEt (P,AB
i
Proof.
= Z pipf = Z pigi i)l *®
i ij
Z piE¢ (p,AB) = Z piqiEs (I¢’ij)AB)
i ij
® F£;is the minimal average entanglement =

Ef ZplquEf |¢lj> )

* In summary: E; (Z,-p,'pr) = E; (o-AB) < . piE; (p,.AB). Q.E.D.
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Monotonicity of E; under local measurements

Proposition 6.2. For pure states |¢)*? entanglement of formation
does not increase on average under local measurements on

Alice’s side:
D PiE(10*?) < Ey(10)*®)

with

pi=Tr|Ki® LI K e 1],
1

Ki®1)y) 8.
\/5,-( ) )

|18 =
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Entanglement of formation
Proof.

® Local measurements on Alice’s side do not change the state
of Bob
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Proof.
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® Thus
p° = Teall)wi®®| = 3 piTea [loi@i*®] = ) pior?

with o = Tra [I¢i)(eil*® |
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Entanglement of formation

Proof.

® Local measurements on Alice’s side do not change the state
of Bob

® Thus
p° = Teall)wi®®| = 3 piTea [loi@i*®] = ) pior?

with o8 = Tra [1:)(il* |
¢ By definition of E; we have

Er(ly)*®) = S(p®), ZPiEf(|¢i>AB) = Z piS(c?).
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Entanglement of formation

Proof.
PP = pol. of =Trallgei|
i

Ei(l0)*) = S(o%), ) piE#0"®) = ) piS(oT)
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i
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¢ von Neumann entropy is concave: Z,-p,-S(cr,.B) < S(Z,p,-criB)
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Proof.
p? = Z piol, o =Tra|lgiXeil*®|
E()*®) = S(0°), ), piE160*®) = > piS(cF)

¢ von Neumann entropy is concave: Z,-p,-S(cr,.B) < S(Z,p,-criB)

¢ We have:

Zp/Ef |¢l ZPIS(O' ) < S(Zplo- )

= S(p®) = E(ly)*®)
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Entanglement of formation

Proof.
p? = Z piol, o =Tra|lgiXeil*®|
E()*®) = S(0°), ), piE160*®) = > piS(cF)

¢ von Neumann entropy is concave: Z,-p,-S(cr,.B) < S(Z,p,-criB)

¢ We have:

Zp/Ef |¢l ZPIS(O' ) < S(Zplo- )

= S(p®) = E(ly)*®)

e Insummary: 3, piEs(16)B) < Ex(ju)B)
Q.E.D.
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Monotonicity of E; under local measurements

Extension to mixed states p”Z and local Kraus operators Ki:
pi=Tr[Ki® 1p*°K @ 1]

I

1
B = EK,- ® IlpABKiT ®1
i
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Monotonicity of E; under local measurements

Extension to mixed states p”Z and local Kraus operators Ki:
pi=Tr[Ki® 1p*°K @ 1]
1
B = EK,- ® IlpABKiT ®1
i

I

Proposition 6.3. For all mixed states p”8 the entanglement of
formation does not increase on average under local measurements

on Alice’s side:
D" piEH(o®) < Er(p*®).
i
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I
Proof.
* Consider optimal decomposition p"8 = ¥; g; ;) (w;|*® such

that
Er(p"®) = > aiE(w)™®)
j
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
* Consider optimal decomposition p"8 = ¥; g; ;) (w;|*® such
that
E(p"®) = > qiEr(y)*®)
J
¢ Define

pj = Tr [(K,- ® 1) g}l (Kf ® ]l)]

1
0" =~ (K@ 1) )™
i
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
* Consider optimal decomposition p"8 = ¥; g; ;) (w;|*® such
that
E(p"®) = > qiEr(y)*®)
J
¢ Define

pj = Tr [(K,- ® 1) g}l (Kf ® ]l)]

1
0" =~ (K@ 1) )™
i

* Note that > gjpj = pi
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
pi = Tr[(Kie D)l (K @ 1)]

1
¢i)? = — (Ki® 1) ly)*®
\Pi
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
pi = Tr[(Kie D)l (K @ 1)]

1
¢i)? = — (Ki® 1) ly)*®
\Pi

For the entanglement of formation of o*# we obtain

1 :
Er (o) = E (EK,- ® 1p"8K' ® 11)
1

j i

~ [Z TKi© 1w K @ 11]
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
pi = Tr[(Kie D)l (K @ 1)]

1
¢i)? = — (Ki® 1) ly)*®
\Pi

For the entanglement of formation of o*# we obtain

Et(oF) = E [Z %Kf ® 1l K ® 1]
j ]

_ [Z e |¢U><¢U|AB]

J
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”P the entanglement of
formation does not increase on average under local measurements
on Alice’s side: ¥; piEs(c) < Ef(p"B)

Proof.

Et (o) = E [Z B |¢,,><¢,,|AB]

i
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”P the entanglement of
formation does not increase on average under local measurements
on Alice’s side: ¥; piEs(c) < Ef(p"B)

Proof.

Et (o) = E [Z B |¢,,><¢,,|AB]

j
® Convexity of E;:

)= T (1))

j 1
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”P the entanglement of
formation does not increase on average under local measurements
on Alice’s side: ¥; piEs(c) < Ef(p"B)

Proof.
qjPijj
Et(c®) = E [Z = |¢,,><¢,,|AB]
j
® Convexity of E;:

)= T (1))

j 1
¢ |eading to
Z piEs ((ff‘B) < Z q;piiEr (|¢ij>AB)
i ij

31/36



Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.

Z piEf (O';AB) < Z ijijEf (|¢ij>AB)
i ij
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
Z piEs (o) < Z qip;Er (1))
® Recall that ’j
pj = Tr[(Ki® 1) )il (K @ 1))]

1
B = —

’<} Q1 A\AB
\/FTU( ) )
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
Z piEs (o) < Z qip;Er (1))
® Recall that ’j
pj = Tr[(Ki® 1) )il (K @ 1))]

1
=
y [

* Proposition 6.2 = 3, p;Er (1)*%) < E; (lyj)*®)

(Ki® 1) |y;)*8
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
Z piEs (o) < Z qip;Er (1))
® Recall that ’j
pj = Tr[(Ki® 1) )il (K @ 1))]

1
=
y [

* Proposition 6.2 = Y; pjEy (|¢U>AB) < E (I%‘)AB)
o %ipiEr(off) < 2 g i piEr (160)"*°) < X G (Iw)"8)

(Ki® 1) |y;)*8
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.

Z piEf (0'}48) < Z QiEs (ll//j)AB)
i )

31/36



Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
Z piEf (0'}48) < Z QiEs (ll//j)AB)
i j
* Recall that {q;, |;)"*®} is an optimal decomposition:

Ef(p™?) = Z qEr(ly)*®)
]
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Monotonicity of E; under local measurements

Proposition 6.3. For all mixed states p”B the entanglement of
formation does not increase on average under local measurements
on Alice’s side: Y; piE;(cB) < Ef(p*B)

I

Proof.
Z piEf (G'}AB) < Z QiEs (ll//j)AB)
i j
* Recall that {q;, |;)"*®} is an optimal decomposition:

Ef(p™?) = Z qEr(ly)*®)
]

* 2ipiEs (U}AB) < Ey (pAB)
Q.E.D.
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Monotonicity of Ef under LOCC

Proposition 6.3. For all mixed states p”f the entanglement of
formation does not increase on average under local measurements

on Alice’s side:
Z piEt(oi™) < Ef( )
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Generalizes to local measurements on Alice’s and Bob’s side, with
exchange of measurement outcomes via classical channel
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Monotonicity of Ef under LOCC

Proposition 6.3. For all mixed states p”f the entanglement of
formation does not increase on average under local measurements

on Alice’s side:
Z piEt(oi™) < Ef( )

Generalizes to local measurements on Alice’s and Bob’s side, with
exchange of measurement outcomes via classical channel

Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:

2. PiE(®) < E(p").
i
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Monotonicity of Ef under LOCC

Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:

> PE®) < Ei(p™®).
i

Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Et(ALocclp]) < Ef(p)
for any LOCC protocol Apocc.

Exercise: prove this theorem from Proposition 6.4. by using con-
vexity of Ef
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Monotonicity of Ef under LOCC

Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:

> PE®) < Ei(p™®).
i

Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Et(ALocclp]) < Ef(p)
for any LOCC protocol Apocc.

Proof.
Let ALocc be an LOCC protocol leading to states o8 with proba-
bility p; when applied to a state p*:

Arocclp?®] = Z pic e,
B
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Monotonicity of Ef under LOCC

Proposition 6.4. Entanglement of formation does not increase on
average under local operations and classical communication:

> PE®) < Ei(p™®).
i

Theorem 6.1. Entanglement of formation does not increase un-
der LOCC:

Et(ALocclp]) < Ef(p)
for any LOCC protocol Apocc.

Proof.
We use Proposition 6.4. and convexity of E;:

Er(ALocc[o®®]) = E (Z PiU'IAB) < ZPiEf(O',AB) < Er(p*®).
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Evaluating E; for two qubits

e Concurrence of a two-qubit state p”&:

C(pAB) = max{O, /11 - /12 - /13 - /14}
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® J1;: square roots (in decreasing order) of the eigenvalues of
PP, with
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where p* denotes entry-wise complex conjugation
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Evaluating E; for two qubits

e Concurrence of a two-qubit state p”&:
C(pAB) = max{O, /11 - /12 - /13 - /14}
® J1;: square roots (in decreasing order) of the eigenvalues of
PP, with
p=(oy®@0y)p (0y®0y),
where p* denotes entry-wise complex conjugation

¢ Entanglement of formation:

Ef(pAB) — h(1 1- CZ(pAB)]

with h(x) = —x logo x — (1 — x) logo(1 — x)

36/36



	Entanglement distillation and dilution
	Mixed state entanglement distillation
	Matrix realignment criterion
	Bound entanglement

	Quantification of entanglement
	Entanglement of formation Ef
	Convexity of Ef
	Monotonicity of Ef under local measurements
	Monotonicity of Ef under LOCC
	Evaluating Ef for two qubits


