Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

5th class
March 30, 2022

Advanced quantum information

- Every Wednesday 15:15-17:00
- Literature:
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2012)
- Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009)
- Howework and lecture notes: http://qot.cent.uw.edu.pl/teaching/
- 2. Homework sheet to be submitted via email by 5. April

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation

Matrix realignment criterion

Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Outline

(1) Entanglement distillation and dilution Mixed state entanglement distillation
Matrix realignment criterion Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Mixed state entanglement distillation

Mixed state entanglement distillation

Entanglement distillation for mixed states: converting m copies of ρ into n singlets in the limit $m \rightarrow \infty$

Mixed state entanglement distillation

Entanglement distillation for mixed states: converting m copies of ρ into n singlets in the limit $m \rightarrow \infty$

Exercise: can a separable state $\rho_{\text {sep }}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes$ $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ be distilled into singlets?

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

- Section 5.5.: stochastic LOCC brings $\rho^{\otimes m}$ to

$$
\sigma=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

with probability $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho{ }^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$

Mixed state entanglement distillation

Separable states cannot be distilled into singlets:

- Section 5.5.: stochastic LOCC brings $\rho^{\otimes m}$ to

$$
\sigma=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

with probability $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$

- If ρ is separable $\Rightarrow \rho^{\otimes m}$ is separable $\Rightarrow \sigma$ is separable

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Assume ρ can be distilled into singlets

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Assume ρ can be distilled into singlets
- \Rightarrow There exists a stochastic LOCC protocol bringing $\rho^{\otimes m}$ arbitrary close to a singlet for large m

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Assume ρ can be distilled into singlets
- \Rightarrow There exists a stochastic LOCC protocol bringing $\rho^{\otimes m}$ arbitrary close to a singlet for large m
- There must exist a stochastic LOCC protocol transforming $\rho^{\otimes m}$ into an entangled two-qubit state $\sigma_{2 q}$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Section 5.5.: stochastic LOCC transformation has the form

$$
\sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Section 5.5.: stochastic LOCC transformation has the form

$$
\sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

- Probability: $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- Section 5.5.: stochastic LOCC transformation has the form

$$
\sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}
$$

- Probability: $p=\operatorname{Tr}\left[\sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}\right]$
- A_{j} and $B_{j}: 2 \times d_{A}$ and $2 \times d_{B}$ rectangular matrices

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- ρ distillable $\Rightarrow \sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}$ is entangled

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- ρ distillable $\Rightarrow \sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}$ is entangled
- $\Rightarrow \sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- ρ distillable $\Rightarrow \sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}$ is entangled
- $\Rightarrow \sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- Probability: $p_{i}=\operatorname{Tr}\left[A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}\right]$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- ρ distillable $\Rightarrow \sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}$ is entangled
- $\Rightarrow \sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- Probability: $p_{i}=\operatorname{Tr}\left[A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}\right]$
- Exercise: prove that for entangled state $\sigma_{2 q}$ there must exist i such that σ_{i} is entangled

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- ρ distillable $\Rightarrow \sigma_{2 q}=\frac{1}{p} \sum_{j} A_{j} \otimes B_{j} \rho^{\otimes m} A_{j}^{\dagger} \otimes B_{j}^{\dagger}$ is entangled
- $\Rightarrow \sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- Probability: $p_{i}=\operatorname{Tr}\left[A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}\right]$
- Exercise: prove that for entangled state $\sigma_{2 q}$ there must exist i such that σ_{i} is entangled
- Solution: note that $\sigma_{2 q}=\frac{1}{\sum_{j} p_{j}} \sum_{i} p_{i} \sigma_{i}$
$\Rightarrow \sigma_{2 q}$ is separable if all σ_{i} are separable

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- $\sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- A_{i} and B_{i} : rectangular $2 \times d_{A}$ and $2 \times d_{B}$ matrices

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- $\sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- A_{i} and B_{i} : rectangular $2 \times d_{A}$ and $2 \times d_{B}$ matrices
- It follows:

$$
\begin{aligned}
& A_{i}=|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right| \\
& B_{i}=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- $\sigma_{i}=\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger}$ is entangled for some i
- A_{i} and B_{i} : rectangular $2 \times d_{A}$ and $2 \times d_{B}$ matrices
- It follows:

$$
\begin{aligned}
& A_{i}=|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right| \\
& B_{i}=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|
\end{aligned}
$$

- $\left|\alpha_{i}\right\rangle \in \mathcal{H}_{A}$ and $\left|\beta_{i}\right\rangle \in \mathcal{H}_{B}$ are (possibly unnormalized) vectors

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\begin{aligned}
& A_{i}=|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right| \\
& B_{i}=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|
\end{aligned}
$$

- P_{A} : projector onto the subspace spanned by $\left|\alpha_{0}\right\rangle$ and $\left|\alpha_{1}\right\rangle$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\begin{aligned}
& A_{i}=|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right| \\
& B_{i}=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|
\end{aligned}
$$

- P_{A} : projector onto the subspace spanned by $\left|\alpha_{0}\right\rangle$ and $\left|\alpha_{1}\right\rangle$
- P_{B} : projector onto the subspace spanned by $\left|\beta_{0}\right\rangle$ and $\left|\beta_{1}\right\rangle$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\begin{aligned}
& A_{i}=|0\rangle\left\langle\alpha_{0}\right|+|1\rangle\left\langle\alpha_{1}\right| \\
& B_{i}=|0\rangle\left\langle\beta_{0}\right|+|1\rangle\left\langle\beta_{1}\right|
\end{aligned}
$$

- P_{A} : projector onto the subspace spanned by $\left|\alpha_{0}\right\rangle$ and $\left|\alpha_{1}\right\rangle$
- P_{B} : projector onto the subspace spanned by $\left|\beta_{0}\right\rangle$ and $\left|\beta_{1}\right\rangle$
- It holds

$$
\begin{aligned}
\sigma_{i} & =\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger} \\
& =\frac{1}{p_{i}} A_{i} \otimes B_{i}\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right) A_{i}^{\dagger} \otimes B_{i}^{\dagger}
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- It holds

$$
\begin{aligned}
\sigma_{i} & =\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger} \\
& =\frac{1}{p_{i}} A_{i} \otimes B_{i}\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right) A_{i}^{\dagger} \otimes B_{i}^{\dagger}
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

- It holds

$$
\begin{aligned}
\sigma_{i} & =\frac{1}{p_{i}} A_{i} \otimes B_{i} \rho^{\otimes m} A_{i}^{\dagger} \otimes B_{i}^{\dagger} \\
& =\frac{1}{p_{i}} A_{i} \otimes B_{i}\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right) A_{i}^{\dagger} \otimes B_{i}^{\dagger}
\end{aligned}
$$

- σ_{i} is entangled \Rightarrow

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}
$$

must be entangled

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}
$$

- Consider orthonormal product basis $\left|f_{i}\right\rangle \otimes\left|g_{k}\right\rangle$ such that

$$
\begin{aligned}
& P_{A}=\left|f_{0}\right\rangle\left\langle f_{0}\right|+\left|f_{1}\right\rangle\left\langle f_{1}\right| \\
& P_{B}=\left|g_{0}\right\rangle\left\langle g_{0}\right|+\left|g_{1}\right\rangle\left\langle g_{1}\right|
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}
$$

- Consider orthonormal product basis $\left|f_{i}\right\rangle \otimes\left|g_{k}\right\rangle$ such that

$$
\begin{aligned}
& P_{A}=\left|f_{0}\right\rangle\left\langle f_{0}\right|+\left|f_{1}\right\rangle\left\langle f_{1}\right| \\
& P_{B}=\left|g_{0}\right\rangle\left\langle g_{0}\right|+\left|g_{1}\right\rangle\left\langle g_{1}\right|
\end{aligned}
$$

- In the basis $\left|f_{i}\right\rangle \otimes\left|g_{k}\right\rangle$ the state μ takes the form

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

- For evaluating $\mu^{T_{A}}$ we can focus on $\tau_{2 q}^{T_{A}}$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

- For evaluating $\mu^{T_{A}}$ we can focus on $\tau_{2 q}^{T_{A}}$
- If $\tau_{2 q}^{T_{A}}$ is positive $\Rightarrow \tau_{2 q}$ is separable (Theorem 3.2.)

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

- For evaluating $\mu^{T_{A}}$ we can focus on $\tau_{2 q}^{T_{A}}$
- If $\tau_{2 q}^{T_{A}}$ is positive $\Rightarrow \tau_{2 q}$ is separable (Theorem 3.2.)
- \Rightarrow Contradiction: μ is separable but we showed previously that μ must be entangled!

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

- For evaluating $\mu^{T_{A}}$ we can focus on $\tau_{2 q}^{T_{A}}$
- If $\tau_{2 q}^{T_{A}}$ is positive $\Rightarrow \tau_{2 q}$ is separable (Theorem 3.2.)
- \Rightarrow Contradiction: μ is separable but we showed previously that μ must be entangled!
- $\Rightarrow \tau_{2 q}^{T_{A}}$ must have negative eigenvalues

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

and $\tau_{2 q}^{T_{A}}$ must have negative eigenvalues

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

and $\tau_{2 q}^{T_{A}}$ must have negative eigenvalues
There exists a vector

$$
|\psi\rangle=\sum_{i, k=0}^{1} c_{i k}\left|f_{i}\right\rangle\left|g_{k}\right\rangle
$$

such that $\langle\psi| \tau_{2 q}^{T_{A}}|\psi\rangle<0$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\left(\begin{array}{cccc}
\tau_{2 q} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right)
$$

and $\tau_{2 q}^{T_{A}}$ must have negative eigenvalues
We have $\langle\psi| \tau_{2 q}^{T_{A}}|\psi\rangle=\langle\psi| \mu^{T_{A}}|\psi\rangle$, which implies that

$$
\langle\psi| \mu^{T_{A}}|\psi\rangle<0
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}, \quad\langle\psi| \mu^{T_{A}}|\psi\rangle<0
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}, \quad\langle\psi| \mu^{T_{A}}|\psi\rangle<0
$$

The following equalities hold:

$$
\begin{aligned}
\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right)^{T_{A}} & =P_{A} \otimes P_{B}\left(\rho^{\otimes m}\right)^{T_{A}} P_{A} \otimes P_{B} \\
P_{A} \otimes P_{B}|\psi\rangle & =|\psi\rangle
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.

$$
\mu=\frac{P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}, \quad\langle\psi| \mu^{T_{A}}|\psi\rangle<0
$$

The following equalities hold:

$$
\begin{aligned}
\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right)^{T_{A}} & =P_{A} \otimes P_{B}\left(\rho^{\otimes m}\right)^{T_{A}} P_{A} \otimes P_{B}, \\
P_{A} \otimes P_{B}|\psi\rangle & =|\psi\rangle
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
0 & >\langle\psi| \mu^{T_{A}}|\psi\rangle=\frac{\langle\psi|\left(P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right)^{T_{A}}|\psi\rangle}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}= \\
& =\frac{\langle\psi| P_{A} \otimes P_{B}\left(\rho^{\otimes m}\right)^{T_{A}} P_{A} \otimes P_{B}|\psi\rangle}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}=\frac{\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle}{\operatorname{Tr}\left[P_{A} \otimes P_{B} \rho^{\otimes m} P_{A} \otimes P_{B}\right]}
\end{aligned}
$$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.
We have $0>\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.
We have $0>\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle$
Exercise: prove that $\rho^{T_{A}}$ is not positive semidefinite

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.
We have $0>\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle$
Exercise: prove that $\rho^{T_{A}}$ is not positive semidefinite
Solution:

- for two matrices $M_{1}^{A_{1} B_{1}}$ and $M_{2}^{A_{2} B_{2}}$ it holds that

$$
\left(M_{1}^{A_{1} B_{1}} \otimes M_{2}^{A_{2} B_{2}}\right)^{T_{A_{1} A_{2}}}=\left(M_{1}^{A_{1} B_{1}}\right)^{T_{A_{1}}} \otimes\left(M_{2}^{A_{2} B_{2}}\right)^{T_{A_{2}}}
$$

and similar for more than 2 matrices

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.
We have 0$\rangle\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle$
Exercise: prove that $\rho^{T_{A}}$ is not positive semidefinite
Solution:

- for two matrices $M_{1}^{A_{1} B_{1}}$ and $M_{2}^{A_{2} B_{2}}$ it holds that

$$
\left(M_{1}^{A_{1} B_{1}} \otimes M_{2}^{A_{2} B_{2}}\right)^{T_{A_{1} A_{2}}}=\left(M_{1}^{A_{1} B_{1}}\right)^{T_{A_{1}}} \otimes\left(M_{2}^{A_{2} B_{2}}\right)^{T_{A_{2}}}
$$

and similar for more than 2 matrices

- $\Rightarrow\left(\rho^{\otimes m}\right)^{T_{A}}=\left(\rho^{T_{A}}\right)^{\otimes m}$

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Proof.
We have 0$\rangle\langle\psi|\left(\rho^{\otimes m}\right)^{T_{A}}|\psi\rangle$
Exercise: prove that $\rho^{T_{A}}$ is not positive semidefinite

Solution:

- for two matrices $M_{1}^{A_{1} B_{1}}$ and $M_{2}^{A_{2} B_{2}}$ it holds that

$$
\left(M_{1}^{A_{1} B_{1}} \otimes M_{2}^{A_{2} B_{2}}\right)^{T_{A_{1} A_{2}}}=\left(M_{1}^{A_{1} B_{1}}\right)^{T_{A_{1}}} \otimes\left(M_{2}^{A_{2} B_{2}}\right)^{T_{A_{2}}}
$$

and similar for more than 2 matrices

- $\Rightarrow\left(\rho^{\otimes m}\right)^{T_{A}}=\left(\rho^{T_{A}}\right)^{\otimes m}$
- $\Rightarrow \rho^{T_{A}}$ must have negative eigenvalues
Q.E.D.

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

- Separable states have positive partial transpose

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

- Separable states have positive partial transpose
- \Rightarrow Separable states cannot be distilled

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

- Separable states have positive partial transpose
- \Rightarrow Separable states cannot be distilled
- Are there entangled states which cannot be distilled?

Mixed state entanglement distillation

Theorem 5.2. States with positive partial transpose cannot be distilled into singlets.

- Separable states have positive partial transpose
- \Rightarrow Separable states cannot be distilled
- Are there entangled states which cannot be distilled?
- Independent entanglement detection criterion required

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Matrix realignment criterion

- Consider a 2×2 matrix

$$
M=\left(\begin{array}{ll}
M_{00} & M_{01} \\
M_{10} & M_{11}
\end{array}\right)
$$

Matrix realignment criterion

- Consider a 2×2 matrix

$$
M=\left(\begin{array}{ll}
M_{00} & M_{01} \\
M_{10} & M_{11}
\end{array}\right)
$$

- We can "vectorize" M by defining

$$
\vec{M}=\left(M_{00}, M_{10}, M_{01}, M_{11}\right)^{T}
$$

Matrix realignment criterion

- Consider a 2×2 matrix

$$
M=\left(\begin{array}{ll}
M_{00} & M_{01} \\
M_{10} & M_{11}
\end{array}\right)
$$

- We can "vectorize" M by defining

$$
\vec{M}=\left(M_{00}, M_{10}, M_{01}, M_{11}\right)^{T}
$$

- Similar for larger dimensions

Matrix realignment criterion

- Consider two-qubit density matrix

$$
\rho=\left(\begin{array}{llll}
\rho_{00} & \rho_{01} & \rho_{02} & \rho_{03} \\
\rho_{10} & \rho_{11} & \rho_{12} & \rho_{13} \\
\rho_{20} & \rho_{21} & \rho_{22} & \rho_{23} \\
\rho_{30} & \rho_{31} & \rho_{32} & \rho_{33}
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
Y^{\dagger} & Z
\end{array}\right)
$$

Matrix realignment criterion

- Consider two-qubit density matrix

$$
\rho=\left(\begin{array}{llll}
\rho_{00} & \rho_{01} & \rho_{02} & \rho_{03} \\
\rho_{10} & \rho_{11} & \rho_{12} & \rho_{13} \\
\rho_{20} & \rho_{21} & \rho_{22} & \rho_{23} \\
\rho_{30} & \rho_{31} & \rho_{32} & \rho_{33}
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
Y^{\dagger} & Z
\end{array}\right)
$$

- Realigned matrix

$$
\tilde{\rho}=\left(\begin{array}{c}
\vec{X}^{T} \\
\overrightarrow{Y^{\ddagger} T} \\
\vec{Y}^{T} \\
\vec{Z}^{T}
\end{array}\right)=\left(\begin{array}{llll}
\rho_{00} & \rho_{10} & \rho_{01} & \rho_{11} \\
\rho_{20} & \rho_{30} & \rho_{21} & \rho_{31} \\
\rho_{02} & \rho_{12} & \rho_{03} & \rho_{13} \\
\rho_{22} & \rho_{32} & \rho_{23} & \rho_{33}
\end{array}\right)
$$

Matrix realignment criterion

- Consider two-qubit density matrix

$$
\rho=\left(\begin{array}{llll}
\rho_{00} & \rho_{01} & \rho_{02} & \rho_{03} \\
\rho_{10} & \rho_{11} & \rho_{12} & \rho_{13} \\
\rho_{20} & \rho_{21} & \rho_{22} & \rho_{23} \\
\rho_{30} & \rho_{31} & \rho_{32} & \rho_{33}
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
Y^{\dagger} & Z
\end{array}\right)
$$

- Realigned matrix

$$
\tilde{\rho}=\left(\begin{array}{c}
\vec{X}^{T} \\
\overrightarrow{Y^{\ddagger} T} \\
\vec{Y}^{T} \\
\vec{Z}^{T}
\end{array}\right)=\left(\begin{array}{llll}
\rho_{00} & \rho_{10} & \rho_{01} & \rho_{11} \\
\rho_{20} & \rho_{30} & \rho_{21} & \rho_{31} \\
\rho_{02} & \rho_{12} & \rho_{03} & \rho_{13} \\
\rho_{22} & \rho_{32} & \rho_{23} & \rho_{33}
\end{array}\right)
$$

- Similar for larger dimensions

Matrix realignment criterion

- Trace norm of $\tilde{\rho}$ can be used to detect entanglement

Matrix realignment criterion

- Trace norm of $\tilde{\rho}$ can be used to detect entanglement
- Trace norm of M :

$$
\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}=\sum_{i} s_{i}
$$

Matrix realignment criterion

- Trace norm of $\tilde{\rho}$ can be used to detect entanglement
- Trace norm of M :

$$
\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}=\sum_{i} s_{i}
$$

- Triangle inequality:

$$
\|A+B\|_{1} \leq\|A\|_{1}+\|B\|_{1}
$$

Matrix realignment criterion

- Trace norm of $\tilde{\rho}$ can be used to detect entanglement
- Trace norm of M :

$$
\|M\|_{1}=\operatorname{Tr} \sqrt{M^{\dagger} M}=\sum_{i} s_{i}
$$

- Triangle inequality:

$$
\|A+B\|_{1} \leq\|A\|_{1}+\|B\|_{1}
$$

- Trace norm is absolutely homogeneous:

$$
\|a M\|_{1}=|a| \cdot\|M\|_{1}
$$

for any matrix M and any $a \in \mathbb{C}$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

- Let ρ be a pure product state:

$$
\rho=|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.

Proof.

- Let ρ be a pure product state:

$$
\rho=|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|
$$

- "Vectorize" the matrices $|\psi\rangle\langle\psi|$ and $|\phi\rangle\langle\phi|$ with the corresponding vectors $\vec{\psi}$ and $\vec{\phi}$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.

Proof.

- Let ρ be a pure product state:

$$
\rho=|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|
$$

- "Vectorize" the matrices $|\psi\rangle\langle\psi|$ and $|\phi\rangle\langle\phi|$ with the corresponding vectors $\vec{\psi}$ and $\vec{\phi}$
- It holds

$$
|\vec{\psi}|=|\vec{\phi}|=1
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

- Let ρ be a pure product state:

$$
\rho=|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|
$$

- "Vectorize" the matrices $|\psi\rangle\langle\psi|$ and $|\phi\rangle\langle\phi|$ with the corresponding vectors $\vec{\psi}$ and $\vec{\phi}$
- It holds

$$
|\vec{\psi}|=|\vec{\phi}|=1
$$

- Realigned matrix $\tilde{\rho}$ can be written as

$$
\tilde{\rho}=\vec{\psi} \cdot \vec{\phi}^{T}
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

- Let ρ be a pure product state:

$$
\rho=|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|
$$

- "Vectorize" the matrices $|\psi\rangle\langle\psi|$ and $|\phi\rangle\langle\phi|$ with the corresponding vectors $\vec{\psi}$ and $\vec{\phi}$
- It holds

$$
|\vec{\psi}|=|\vec{\phi}|=1
$$

- Realigned matrix $\tilde{\rho}$ can be written as

$$
\tilde{\rho}=\vec{\psi} \cdot \vec{\phi}^{T}
$$

- Trace norm of $\tilde{\rho}$ is given as $\|\tilde{\rho}\|_{1}=1$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.

Proof.

- Consider a separable state

$$
\rho_{\mathrm{sep}}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.

Proof.

- Consider a separable state

$$
\rho_{\text {sep }}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

- Realigned matrix $\widetilde{\rho_{\text {sep }}}$ takes the form

$$
\widetilde{\rho_{\text {sep }}}=\sum_{i} p_{i} \vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

- Consider a separable state

$$
\rho_{\text {sep }}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

- Realigned matrix $\widetilde{\rho_{\text {sep }}}$ takes the form

$$
\widetilde{\rho_{\text {sep }}}=\sum_{i} p_{i} \vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}
$$

- $\vec{\psi}_{i}$ and $\vec{\phi}_{i}$: "vectorized" matrices $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ and $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

$$
\widetilde{\rho_{\text {sep }}}=\sum_{i} p_{i} \vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}
$$

Matrix realignment criterion

Proposition 5.3. Any separable state ρ fulfills $\|\tilde{\rho}\|_{1} \leq 1$.
Proof.

$$
\widetilde{\rho_{\text {sep }}}=\sum_{i} p_{i} \vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}
$$

Trace norm of $\widetilde{\rho_{\text {sep }}}$:

$$
\left\|\widetilde{\rho_{\text {sep }}}\right\|_{1}=\left\|\sum_{i} p_{i} \vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}\right\|_{1} \leq \sum_{i} p_{i}\left\|\vec{\psi}_{i} \cdot \vec{\phi}_{i}^{T}\right\|_{1}=1
$$

Q.E.D.

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Bound entanglement

For $d_{A}=d_{B}=3$ and $0 \leq a \leq 1$ consider

$$
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
$$

Bound entanglement

For $d_{A}=d_{B}=3$ and $0 \leq a \leq 1$ consider

$$
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
$$

- ρ_{a} is PPT for all $0 \leq a \leq 1$

Bound entanglement

For $d_{A}=d_{B}=3$ and $0 \leq a \leq 1$ consider

$$
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
$$

- ρ_{a} is PPT for all $0 \leq a \leq 1$
- $\|\tilde{\rho}\|_{1}>1$ for all $0<a<1$

Bound entanglement

For $d_{A}=d_{B}=3$ and $0 \leq a \leq 1$ consider

$$
\rho_{a}=\frac{1}{8 a+1}\left(\begin{array}{ccccccccc}
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^{2}}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & 0 & \frac{\sqrt{1-a^{2}}}{2} & 0 & \frac{1+a}{2}
\end{array}\right)
$$

- ρ_{a} is PPT for all $0 \leq a \leq 1$
- $\|\tilde{\rho}\|_{1}>1$ for all $0<a<1$
- $\Rightarrow \rho_{\mathrm{a}}$ is bound entangled for $0<a<1$

Bound entanglement

In summary:

- All separable states and some entangled states have positive partial transpose (PPT)

Bound entanglement

In summary:

- All separable states and some entangled states have positive partial transpose (PPT)
- PPT states cannot be distilled into singlets

Bound entanglement

In summary:

- All separable states and some entangled states have positive partial transpose (PPT)
- PPT states cannot be distilled into singlets
- There are PPT entangled states \Rightarrow these states require singlets to be created, but cannot be converted into singlets

Bound entanglement

In summary:

- All separable states and some entangled states have positive partial transpose (PPT)
- PPT states cannot be distilled into singlets
- There are PPT entangled states \Rightarrow these states require singlets to be created, but cannot be converted into singlets
- These states are called bound entangled

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Entanglement quantification

How much entanglement is in a given quantum state ρ ?

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties

Entanglement quantification

How much entanglement is in a given quantum state ρ ?
Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,

Entanglement quantification

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,
(2) E does not increase under local operations and classical communication:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$

Entanglement quantification

How much entanglement is in a given quantum state ρ ?

Entanglement measure: function $E(\rho)$ with following properties
(1) $E(\rho) \geq 0$, and equality holds if ρ is separable,
(2) E does not increase under local operations and classical communication:

$$
E\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$
Theorem 2.1.: $\left|\Phi_{d}^{+}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle$ can be converted into any other state ρ via LOCC $\Rightarrow\left|\Phi_{d}^{+}\right\rangle$has maximum entanglement

$$
E(\rho)=E\left(\Lambda_{\mathrm{LOCC}}\left[\left|\Phi_{d}^{+}\right\rangle\left\langle\Phi_{d}^{+}\right|\right]\right) \leq E\left(\left|\Phi_{d}^{+}\right\rangle\right)
$$

Outline

(1) Entanglement distillation and dilution Mixed state entanglement distillation Matrix realignment criterion Bound entanglement

(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Entanglement of formation

- Entanglement of formation for pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

where $\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$

Entanglement of formation

- Entanglement of formation for pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

where $\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Entanglement of formation

- Entanglement of formation for pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

where $\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

- Minimum is taken over all decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ suth that $\rho^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|^{A B}\right.$

Entanglement of formation

- Entanglement of formation for pure states:

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right)
$$

where $\rho^{A}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$

- For mixed states:

$$
E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

- Minimum is taken over all decompositions $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ suth that $\rho^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|^{A B}\right.$
- Interpretation: minimal average entanglement required to create $\rho^{A B}$

Entanglement of formation

$$
E_{f}\left(\mid \psi{ }^{A B}\right)=S\left(\rho^{A}\right), \quad E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Entanglement of formation

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right), \quad E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Exercise: prove that $E_{f}\left(\rho^{A B}\right) \geq 0$, and $E_{f}\left(\sigma^{A B}\right)=0$ for any separable state $\sigma^{A B}$

Entanglement of formation

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{A}\right), \quad E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Exercise: prove that $E_{f}\left(\rho^{A B}\right) \geq 0$, and $E_{f}\left(\sigma^{A B}\right)=0$ for any separable state $\sigma^{A B}$
Solution:

- For any decomposition $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ the average entanglement $\sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)$ is nonnegative

Entanglement of formation

$$
\left.E_{f}(\mid \psi)^{A B}\right)=S\left(\rho^{A}\right), \quad E_{f}\left(\rho^{A B}\right)=\min \sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)
$$

Exercise: prove that $E_{f}\left(\rho^{A B}\right) \geq 0$, and $E_{f}\left(\sigma^{A B}\right)=0$ for any separable state $\sigma^{A B}$
Solution:

- For any decomposition $\left\{p_{i},\left|\psi_{i}\right\rangle^{A B}\right\}$ the average entanglement $\sum_{i} p_{i} E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)$ is nonnegative
- For a separable state $\sigma^{A B}$ there exists a decompotision into product states $\left|\psi_{i}\right\rangle^{A B}=\left|\alpha_{i}\right\rangle^{A} \otimes\left|\beta_{i}\right\rangle^{B}$ with $E_{f}\left(\left|\psi_{i}\right\rangle^{A B}\right)=0$

Entanglement of formation

Next goal: proving that E_{f} does not increase under LOCC

Entanglement of formation

Next goal: proving that E_{f} does not increase under LOCC
For this we will prove that:

- E_{f} is convex

Entanglement of formation

Next goal: proving that E_{f} does not increase under LOCC
For this we will prove that:

- E_{f} is convex
- E_{f} does not increase on average under local measurements for
- pure states

Entanglement of formation

Next goal: proving that E_{f} does not increase under LOCC
For this we will prove that:

- E_{f} is convex
- E_{f} does not increase on average under local measurements for
- pure states
- mixed states

Entanglement of formation

Next goal: proving that E_{f} does not increase under LOCC
For this we will prove that:

- E_{f} is convex
- E_{f} does not increase on average under local measurements for
- pure states
- mixed states
\Rightarrow in combination, this will prove that E_{f} does not increase under LOCC

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Proof.

- Consider a decomposition of $\rho_{i}^{A B}=\sum_{j} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right.$ with the property that

$$
\left.E_{f}\left(\rho_{i}^{A B}\right)=\sum_{j} q_{i j} E_{f}\left(\mid \psi_{i j}\right)^{A B}\right) .
$$

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Proof.

- Consider a decomposition of $\rho_{i}^{A B}=\sum_{j} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right.$ with the property that

$$
E_{f}\left(\rho_{i}^{A B}\right)=\sum_{j} q_{i j} E_{f}\left(\left|\psi_{i j}\right\rangle^{A B}\right)
$$

- Defining $\sigma^{A B}=\sum_{i} p_{i} \rho_{i}^{A B}$ we obtain

$$
\begin{aligned}
\sigma^{A B} & =\sum_{i} p_{i} \rho_{i}^{A B}=\sum_{i j} p_{i} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right. \\
\sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) & =\sum_{i j} p_{i} q_{i j} E_{f}\left(\left|\psi_{i j}\right\rangle^{A B}\right)
\end{aligned}
$$

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Proof.

$$
\begin{aligned}
\sigma^{A B} & =\sum_{i} p_{i} \rho_{i}^{A B}=\sum_{i j} p_{i} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right. \\
\sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) & \left.=\sum_{i j} p_{i} q_{i j} E_{f}\left(\mid \psi_{i j}\right)^{A B}\right)
\end{aligned}
$$

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Proof.

$$
\begin{aligned}
\sigma^{A B} & =\sum_{i} p_{i} \rho_{i}^{A B}=\sum_{i j} p_{i} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right. \\
\sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) & \left.=\sum_{i j} p_{i} q_{i j} E_{f}\left(\mid \psi_{i j}\right)^{A B}\right)
\end{aligned}
$$

- E_{f} is the minimal average entanglement \Rightarrow

$$
E_{f}\left(\sigma^{A B}\right) \leq \sum_{i} p_{i} q_{i j} E_{f}\left(\left|\psi_{i j}\right\rangle^{A B}\right)
$$

Convexity of E_{f}

Proposition 6.1. Entanglement of formation is convex:

$$
E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) .
$$

Proof.

$$
\begin{aligned}
\sigma^{A B} & =\sum_{i} p_{i} \rho_{i}^{A B}=\sum_{i j} p_{i} q_{i j}\left|\psi_{i j}\right\rangle\left\langle\left.\psi_{i j}\right|^{A B}\right. \\
\sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right) & \left.=\sum_{i j} p_{i} q_{i j} E_{f}\left(\mid \psi_{i j}\right)^{A B}\right)
\end{aligned}
$$

- E_{f} is the minimal average entanglement \Rightarrow

$$
E_{f}\left(\sigma^{A B}\right) \leq \sum_{i} p_{i} q_{i j} E_{f}\left(\left|\psi_{i j}\right\rangle^{A B}\right)
$$

- In summary: $E_{f}\left(\sum_{i} p_{i} \rho_{i}^{A B}\right)=E_{f}\left(\sigma^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\rho_{i}^{A B}\right)$. Q.E.D.

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Monotonicity of E_{f} under local measurements

Proposition 6.2. For pure states $|\psi\rangle^{A B}$ entanglement of formation does not increase on average under local measurements on Alice's side:

$$
\sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right) \leq E_{f}\left(|\psi\rangle^{A B}\right)
$$

with

$$
\begin{aligned}
p_{i} & =\operatorname{Tr}\left[K_{i} \otimes \mathbb{1}|\psi\rangle\left\langle\left.\psi\right|^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right]\right. \\
\left|\phi_{i}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i}}}\left(K_{i} \otimes \mathbb{1}\right)|\psi\rangle^{A B} .
\end{aligned}
$$

Entanglement of formation

Proof.

- Local measurements on Alice's side do not change the state of Bob

Entanglement of formation

Proof.

- Local measurements on Alice's side do not change the state of Bob
- Thus

$$
\rho^{B}=\operatorname{Tr}_{A}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]=\sum_{i} p_{i} \operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]=\sum_{i} p_{i} \sigma_{i}^{B}\right.\right.
$$

with $\sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right.$

Entanglement of formation

Proof.

- Local measurements on Alice's side do not change the state of Bob
- Thus

$$
\rho^{B}=\operatorname{Tr}_{A}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]=\sum_{i} p_{i} \operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]=\sum_{i} p_{i} \sigma_{i}^{B}\right.\right.
$$

with $\sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right.$

- By definition of E_{f} we have

$$
E_{f}\left(|\psi\rangle^{A B}\right)=S\left(\rho^{B}\right), \quad \sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right)=\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) .
$$

Entanglement of formation

Proof.

$$
\begin{aligned}
\rho^{B} & =\sum_{i} p_{i} \sigma_{i}^{B}, \quad \sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right. \\
E_{f}\left(|\psi\rangle^{A B}\right) & =S\left(\rho^{B}\right), \quad \sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right)=\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right)
\end{aligned}
$$

Entanglement of formation

Proof.

$$
\begin{aligned}
\rho^{B} & =\sum_{i} p_{i} \sigma_{i}^{B}, \quad \sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right. \\
E_{f}\left(|\psi\rangle^{A B}\right) & =S\left(\rho^{B}\right), \quad \sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right)=\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right)
\end{aligned}
$$

- von Neumann entropy is concave: $\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) \leq S\left(\sum_{i} p_{i} \sigma_{i}^{B}\right)$

Entanglement of formation

Proof.

$$
\begin{aligned}
\rho^{B} & =\sum_{i} p_{i} \sigma_{i}^{B}, \quad \sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right. \\
E_{f}\left(|\psi\rangle^{A B}\right) & =S\left(\rho^{B}\right), \quad \sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right)=\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right)
\end{aligned}
$$

- von Neumann entropy is concave: $\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) \leq S\left(\sum_{i} p_{i} \sigma_{i}^{B}\right)$
- We have:

$$
\begin{aligned}
\sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right) & =\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) \leq S\left(\sum_{i} p_{i} \sigma_{i}^{B}\right) \\
& =S\left(\rho^{B}\right)=E_{f}\left(|\psi\rangle^{A B}\right)
\end{aligned}
$$

Entanglement of formation

Proof.

$$
\begin{aligned}
\rho^{B} & =\sum_{i} p_{i} \sigma_{i}^{B}, \quad \sigma_{i}^{B}=\operatorname{Tr}_{A}\left[\left|\phi_{i}\right\rangle\left\langle\left.\phi_{i}\right|^{A B}\right]\right. \\
E_{f}\left(|\psi\rangle^{A B}\right) & =S\left(\rho^{B}\right), \quad \sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right)=\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right)
\end{aligned}
$$

- von Neumann entropy is concave: $\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) \leq S\left(\sum_{i} p_{i} \sigma_{i}^{B}\right)$
- We have:

$$
\begin{aligned}
\sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right) & =\sum_{i} p_{i} S\left(\sigma_{i}^{B}\right) \leq S\left(\sum_{i} p_{i} \sigma_{i}^{B}\right) \\
& =S\left(\rho^{B}\right)=E_{f}\left(|\psi\rangle^{A B}\right)
\end{aligned}
$$

- In summary: $\sum_{i} p_{i} E_{f}\left(\left|\phi_{i}\right\rangle^{A B}\right) \leq E_{f}\left(|\psi\rangle^{A B}\right)$
Q.E.D.

Monotonicity of E_{f} under local measurements

Extension to mixed states $\rho^{A B}$ and local Kraus operators K_{i} :

$$
\begin{aligned}
p_{i} & =\operatorname{Tr}\left[K_{i} \otimes \mathbb{1} A^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right] \\
\sigma_{i}^{A B} & =\frac{1}{p_{i}} K_{i} \otimes \mathbb{1} \rho^{A B} K_{i}^{\dagger} \otimes \mathbb{1}
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Extension to mixed states $\rho^{A B}$ and local Kraus operators K_{i} :

$$
\begin{aligned}
p_{i} & =\operatorname{Tr}\left[K_{i} \otimes \mathbb{1} \rho^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right] \\
\sigma_{i}^{A B} & =\frac{1}{p_{i}} K_{i} \otimes \mathbb{1} \rho^{A B} K_{i}^{\dagger} \otimes \mathbb{1}
\end{aligned}
$$

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right) .
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

- Consider optimal decomposition $\rho^{A B}=\sum_{j} q_{j}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|^{A B}\right.$ such that

$$
\left.E_{f}\left(\rho^{A B}\right)=\sum_{j} q_{j} E_{f}\left(\mid \psi_{j}\right)^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

- Consider optimal decomposition $\rho^{A B}=\sum_{j} q_{j}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|^{A B}\right.$ such that

$$
E_{f}\left(\rho^{A B}\right)=\sum_{j} q_{j} E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)
$$

- Define

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

- Consider optimal decomposition $\rho^{A B}=\sum_{j} q_{j}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|^{A B}\right.$ such that

$$
\left.E_{f}\left(\rho^{A B}\right)=\sum_{j} q_{j} E_{f}\left(\mid \psi_{j}\right)^{A B}\right)
$$

- Define

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

- Note that $\sum_{j} q_{j} p_{i j}=p_{i}$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

For the entanglement of formation of $\sigma_{i}^{A B}$ we obtain

$$
\begin{aligned}
E_{f}\left(\sigma_{i}^{A B}\right) & =E_{f}\left(\frac{1}{p_{i}} K_{i} \otimes \mathbb{1} \rho^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right) \\
& =E_{f}\left(\sum_{j} \frac{q_{j}}{p_{i}} K_{i} \otimes \mathbb{1}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right)\right.
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

For the entanglement of formation of $\sigma_{i}^{A B}$ we obtain

$$
\begin{aligned}
E_{f}\left(\sigma_{i}^{A B}\right) & =E_{f}\left(\sum_{j} \frac{q_{j}}{p_{i}} K_{i} \otimes \mathbb{1}\left|\psi_{j}\right\rangle\left\langle\left.\psi_{j}\right|^{A B} K_{i}^{\dagger} \otimes \mathbb{1}\right)\right. \\
& =E_{f}\left(\sum_{j} \frac{q_{j} p_{i j}}{p_{i}}\left|\phi_{i j}\right\rangle\left\langle\left.\phi_{i j}\right|^{A B}\right)\right.
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
E_{f}\left(\sigma_{i}^{A B}\right)=E_{f}\left(\sum_{j} \frac{q_{i} p_{i j}}{p_{i}}\left|\phi_{i j}\right\rangle\left\langle\left.\phi_{j j}\right|^{A B}\right)\right.
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
E_{f}\left(\sigma_{i}^{A B}\right)=E_{f}\left(\sum_{j} \frac{q_{j} p_{i j}}{p_{i}}\left|\phi_{i j}\right\rangle\left\langle\left.\phi_{i j}\right|^{A B}\right)\right.
$$

- Convexity of E_{f} :

$$
E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} \frac{q_{j} p_{i j}}{p_{i}} E_{f}\left(\left|\phi_{i j}\right\rangle^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
E_{f}\left(\sigma_{i}^{A B}\right)=E_{f}\left(\sum_{j} \frac{q_{i} p_{i j}}{p_{i}}\left|\phi_{i j}\right\rangle\left\langle\left.\phi_{j j}\right|^{A B}\right)\right.
$$

- Convexity of E_{f} :

$$
E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} \frac{q_{j} p_{i j}}{p_{i}} E_{f}\left(\left|\phi_{i j}\right\rangle^{A B}\right)
$$

- Leading to

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{i, j} q_{j} p_{i j} E_{f}\left(\mid \phi_{i j}\right)^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{i, j} q_{j} p_{i j} E_{f}\left(\mid \phi_{i j}\right)^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{i, j} q_{j} p_{i j} E_{f}\left(\mid \phi_{i j}\right)^{A B}\right)
$$

- Recall that

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{i, j} q_{j} p_{i j} E_{f}\left(\mid \phi_{i j}\right)^{A B}\right)
$$

- Recall that

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

- Proposition $6.2 \Rightarrow \sum_{i} p_{i j} E_{f}\left(\left|\phi_{i j}\right\rangle^{A B}\right) \leq E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{i, j} q_{j} p_{i j} E_{f}\left(\mid \phi_{i j}\right)^{A B}\right)
$$

- Recall that

$$
\begin{aligned}
p_{i j} & =\operatorname{Tr}\left[\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\left(K_{i}^{\dagger} \otimes \mathbb{1}\right)\right] \\
\left|\phi_{i j}\right\rangle^{A B} & =\frac{1}{\sqrt{p_{i j}}}\left(K_{i} \otimes \mathbb{1}\right)\left|\psi_{j}\right\rangle^{A B}
\end{aligned}
$$

- Proposition $6.2 \Rightarrow \sum_{i} p_{i j} E_{f}\left(\left|\phi_{i j}\right\rangle^{A B}\right) \leq E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)$
- $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} q_{j} \sum_{i} p_{i j} E_{f}\left(\left|\phi_{i j}\right\rangle^{A B}\right) \leq \sum_{j} q_{j} E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} q_{j} E_{f}\left(\mid \psi_{j}\right)^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} q_{j} E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)
$$

- Recall that $\left\{q_{j},\left|\psi_{j}\right\rangle^{A B}\right\}$ is an optimal decomposition:

$$
E_{f}\left(\rho^{A B}\right)=\sum_{j} q_{j} E_{f}\left(\left|\psi_{j}\right\rangle^{A B}\right)
$$

Monotonicity of E_{f} under local measurements

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side: $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Proof.

$$
\left.\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq \sum_{j} q_{j} E_{f}\left(\mid \psi_{j}\right)^{A B}\right)
$$

- Recall that $\left.\left\{q_{j}, \mid \psi_{j}\right)^{A B}\right\}$ is an optimal decomposition:

$$
\left.E_{f}\left(\rho^{A B}\right)=\sum_{j} q_{j} E_{f}\left(\mid \psi_{j}\right)^{A B}\right)
$$

- $\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)$
Q.E.D.

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Monotonicity of E_{f} under LOCC

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Monotonicity of E_{f} under LOCC

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Generalizes to local measurements on Alice's and Bob's side, with exchange of measurement outcomes via classical channel

Monotonicity of E_{f} under LOCC

Proposition 6.3. For all mixed states $\rho^{A B}$ the entanglement of formation does not increase on average under local measurements on Alice's side:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Generalizes to local measurements on Alice's and Bob's side, with exchange of measurement outcomes via classical channel

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Monotonicity of E_{f} under LOCC

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Monotonicity of E_{f} under LOCC

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Theorem 6.1. Entanglement of formation does not increase under LOCC:

$$
E_{f}\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E_{f}(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$.

Monotonicity of E_{f} under LOCC

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Theorem 6.1. Entanglement of formation does not increase under LOCC:

$$
E_{f}\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E_{f}(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$.

Exercise: prove this theorem from Proposition 6.4. by using convexity of E_{f}

Monotonicity of E_{f} under LOCC

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Theorem 6.1. Entanglement of formation does not increase under LOCC:

$$
E_{f}\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E_{f}(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$.

Proof.
Let $\Lambda_{\text {LOCC }}$ be an LOCC protocol leading to states $\sigma_{i}^{A B}$ with probability p_{i} when applied to a state $\rho^{A B}$:

$$
\Lambda_{\mathrm{LOCC}}\left[\rho^{A B}\right]=\sum_{i} p_{i} \sigma_{i}^{A B}
$$

Monotonicity of E_{f} under LOCC

Proposition 6.4. Entanglement of formation does not increase on average under local operations and classical communication:

$$
\sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Theorem 6.1. Entanglement of formation does not increase under LOCC:

$$
E_{f}\left(\Lambda_{\mathrm{LOCC}}[\rho]\right) \leq E_{f}(\rho)
$$

for any LOCC protocol $\Lambda_{\text {LOCC }}$.

Proof.
We use Proposition 6.4. and convexity of E_{f} :

$$
E_{f}\left(\Lambda_{\mathrm{LOCC}}\left[\rho^{A B}\right]\right)=E_{f}\left(\sum_{i} p_{i} \sigma_{i}^{A B}\right) \leq \sum_{i} p_{i} E_{f}\left(\sigma_{i}^{A B}\right) \leq E_{f}\left(\rho^{A B}\right)
$$

Outline

(1) Entanglement distillation and dilution

Mixed state entanglement distillation
Matrix realignment criterion
Bound entanglement
(2) Quantification of entanglement
(3) Entanglement of formation E_{f}

Convexity of E_{f}
Monotonicity of E_{f} under local measurements
Monotonicity of E_{f} under LOCC
Evaluating E_{f} for two qubits

Evaluating E_{f} for two qubits

- Concurrence of a two-qubit state $\rho^{A B}$:

$$
C\left(\rho^{A B}\right)=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\}
$$

Evaluating E_{f} for two qubits

- Concurrence of a two-qubit state $\rho^{A B}$:

$$
C\left(\rho^{A B}\right)=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\}
$$

- λ_{i} : square roots (in decreasing order) of the eigenvalues of $\rho \tilde{\rho}$, with

$$
\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

where ρ^{*} denotes entry-wise complex conjugation

Evaluating E_{f} for two qubits

- Concurrence of a two-qubit state $\rho^{A B}$:

$$
C\left(\rho^{A B}\right)=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\}
$$

- λ_{i} : square roots (in decreasing order) of the eigenvalues of $\rho \tilde{\rho}$, with

$$
\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

where ρ^{*} denotes entry-wise complex conjugation

- Entanglement of formation:

$$
E_{f}\left(\rho^{A B}\right)=h\left(\frac{1+\sqrt{1-C^{2}\left(\rho^{A B}\right)}}{2}\right)
$$

with $h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$

