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Advanced quantum information

Every Wednesday 15:15 - 17:00

¢ Literature:
* Nielsen and Chuang, Quantum Computation and Quantum
Information, Cambridge University Press (2012)
® Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009)

Howework and lecture notes:
http://qot.cent.uw.edu.pl/teaching/

Homework to be submitted via email as a single pdf
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Schmidt decomposition
e For any pure state |¢)B there exists a product basis {|i) ® |j)}

such that
W =" Vil el

with 4; > 0
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Schmidt decomposition

e For any pure state |¢)B there exists a product basis {|i) ® |j)}
such that
W =" Jaily @i
i

with 4; > 0

 The numbers A; are called Schmidt coefficients of [)*8

® Schmidt coefficients are equal to the eigenvalues of the
reduced states Tra [[¥)(¥|E] and Trg[ju)(wl*?]

3/30



Outline

@ Theory of quantum entanglement
Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
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Outline

@ Theory of quantum entanglement
Local operations and classical communication

@ Entanglement detection
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Local operations and classical communication (LOCC)
Any LOCC protocol can be decomposed into the following steps:

@ Alice performs a local measurement {Kj} on her subsystem.
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® The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.
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Local operations and classical communication (LOCC)
Any LOCC protocol can be decomposed into the following steps:

@ Alice performs a local measurement {Kj} on her subsystem.

® The outcome i of Alice’s measurement is communicated to
Bob via a classical channel.

© Bob performs a local measurement {L;(i)} on his subsystem,
which depends on Alice’s outcome i.

@ The outcome j of Bob’s measurement is communicated
classically to Alice.

@ Alice performs a local measurement on her subsystem which
can depend on all outcomes of all previous measurements,
and the process starts over at step 2.
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Outline

@ Theory of quantum entanglement

Pure state conversion via LOCC

@ Entanglement detection
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Pure state conversion via LOCC

 Assume that Alice and Bob share the state |y)"?
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Pure state conversion via LOCC

 Assume that Alice and Bob share the state |y)"?

e Which other states |¢)*Z can be obtained via LOCC?

Proposition 2.1. Suppose |¢)*8 can be transformed into |8
via LOCC. Then this transformation can be achieved by a protocol
involving just the following steps: Alice performs a measurement
with Kraus operators {Kj}, sends the result j to Bob, who applies
a conditional unitary U; on his system.
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Pure state conversion via LOCC
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Proof of Proposition 2.1
Let K; = >« Kjk |k)l| be a Kraus operator of Bob expanded in the
Schmidt basis of |y) = 3; VA; i) ® |i). The post-measurement state
|uj) is given as

1®Kjly) _ Yk Kk VA 11y ® k)
VP VP

luj) =

with probability

p = WL e KKl = > AlKjl’.
k.l
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Proof of Proposition 2.1
Let K; = >« Kjk |k)l| be a Kraus operator of Bob expanded in the
Schmidt basis of |y) = 3; VA; i) ® |i). The post-measurement state
|uj) is given as

1®Kjly) _ Yk Kk VA 11y ® k)
VP VP

) =
with probability
pi = Wil @ K Klw) = > AlKjP.
k.l

Assume now that instead Alice performs a measurement with Kraus
operator Lj = >, ; Kjw |k){l|, leading to the state

Li® 1 |y) _ Sk Kk VA k) @11
VP; VB;

with the same probability p;.

vj) =
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Proof of Proposition 2.1

Note that |u;) and |v;) are the same up to interchanging A and B,
which by Schmidt decomposition implies that

EDIRCACINEANE
i
iy = D" vai (V1)) @ (Uj1i)
i
for some «;; > 0 and local unitaries U; and Vj, and thus
) = (U V] ® iU by

Thus, Bob performing a measurement {K;} on [/) is equivalent to Al-
ice performing a measurement {U,-V/TL,-}, followed by Bob perform-

ing the unitary V,-U].T.
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Proof of Proposition 2.1

¢ A measurement by Bob on a pure state can be simulated by a
measurement by Alice, and a conditional unitary by Bob
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replace each round involving Bob’s measurement by a
corresponding measurement on Alice’s side
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Proof of Proposition 2.1

¢ A measurement by Bob on a pure state can be simulated by a
measurement by Alice, and a conditional unitary by Bob

¢ |f Alice and Bob perform an LOCC protocol consisting of many
rounds of measurements and classical communication, we
replace each round involving Bob’s measurement by a
corresponding measurement on Alice’s side

* In this way, any LOCC protocol transforming | into |¢)"B
can be simulated by a single measurement of Alice, followed
by conditional unitary on Bob’s side
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Pure state conversion via LOCC

Majorization:

¢ Consider two real d-dimensional vectors X and y with
elements in decreasing order
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K k
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Pure state conversion via LOCC

Majorization:

¢ Consider two real d-dimensional vectors X and y with
elements in decreasing order

e ThenX <y if
k k
in < Zyi
p i=1
forallk e [1,d—-1],and 3¢, % = 2%, yi

® For a Hermitian matrix H let ZH be the vector of eigenvalues of
H in decreasing order

e For two Hermitian matrices H and K we write H < K if /TH < /TK
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Pure state conversion via LOCC

Proposition 2.2. Let H and K be Hermitian matrices. Then H <
K if and only if there is a probability distribution p; and unitary
matrices U; such that

H=) pUKU.
j
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Pure state conversion via LOCC

Proposition 2.2. Let H and K be Hermitian matrices. Then H <
K if and only if there is a probability distribution p; and unitary
matrices U; such that

H=) pUKU.
j

Theorem 2.1. (Nielsen’s Theorem) There exists an LOCC pro-
tocol transforming |8 into [¢)B if and only if A, < A, where
1, denotes the vector with eigenvalues of the reduced state
Tra[lw)(w|*B] in decreasing order.
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Proof of Theorem 2.1

e Suppose [¥)*B can be transformed into |#)*€ via LOCC.
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Proof of Theorem 2.1

e Suppose [¥)*B can be transformed into |#)*€ via LOCC.

® By proposition 2.1, the transformation is achieved if Alice
applies a measurement with local Kraus operators {K;} and
Bob applies local unitaries {U}}.

¢ After Alice’'s measurement, the total post-measurement state
is equal to |¢)*Z up to local unitaries on Bob’s side:

Ke 1w = \ple U gy,

e Defining py = Tra[ly)w!*?] and ps = Tra[l¢)(¢*?], we get
Kipy K = pioy

with p; = Tr[Kjp, K].
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Proof of Theorem 2.1
* Defining p, = Tra[ly)(w|*®] and ps = Tra(l¢)(¢|*?], we get

Kipu K = pips

with p; = Tr[Kjpy K].
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Proof of Theorem 2.1
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Proof of Theorem 2.1
* Defining p, = Tra[ly)(w|*®] and ps = Tra(l¢)(¢|*?], we get

Kipu K = pips
with p; = Tr[Kjpy K].
By polar decomposition there exists a unitary V; such that
Kips = \KipsK'Vi = \Jpips Vi
¢ Multiplying this equation with its adjoint from the left, we get
VPuK KNPy = BV sV

* Taking sum over j and using KjTK,- = 1 we obtain

Py = Z PV s V.
]

® By proposition 2.2 we have /Tw < /T,p.
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Proof of Theorem 2.1
* Suppose that 1, < A4, and thus p, < py.
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Proof of Theorem 2.1
* Suppose that 1, < A4, and thus p, < py.

® By proposition 2.2
pu =) PUpsUf
j

for some probabilities p; and unitaries U;.

e If p, is invertible, we define

I T —-1/2
Kj = Vpl'pfpujp{/, .

® |t holds that

T . —1/2 1. T -1/2 _  -1/2 -1/2
D KK=np, [Z plU/p¢Uf]pw =py TPupy " =1,
] ]

thus K; are valid Kraus operators.
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Proof of Theorem 2.1

* Suppose Alice performs the measurement {Kj}.
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* Suppose Alice performs the measurement {Kj}.
* Recalling that Kj = PjpsU; p,, "’ it follows
T
Kipu K = pips-
* When Alice applies the measurement {K;} to the total state

)8, she obtains the reduced state p, with probability p;.

e Since all purifications of ps are equivalent up to unitary on
Bob’s side, it follows that there exist unitaries U; on Bob’s side
such that

Ki®L)y*® = \pl e Ul¢)*e.
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Proof of Theorem 2.1

* Suppose Alice performs the measurement {Kj}.

* Recalling that Kj = PjpsU; p,, "’ it follows

T
Kipu K = pips-

* When Alice applies the measurement {K;} to the total state
)8, she obtains the reduced state p, with probability p;.

e Since all purifications of ps are equivalent up to unitary on
Bob’s side, it follows that there exist unitaries U; on Bob’s side
such that

Ki®L)y*® = \pl e Ul¢)*e.

e Thus, if Alice applies measurement {Kj} to the state [y)"8,
communicates the measurement outcome j to Bob, and he
performs UjT, they achieve the conversion [y)*8 — |¢)B.
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Pure state conversion

Exercise: Consider the states

WYAB = V0.4100) + V0.4 [11) + V0.1|22) + V0.1|33)
I9)*B = v0.5|00) + V0.25|11) + V0.25]22)

Is the conversion [y)*8 — Y8 or |pYB — |y )Y*B possible via
LOCC?

Hint: Check if 4, < 4, recalling that X < § if

K K
PREDNY
i= i=

forallk e [1,d—1],and 3¢, x; = 39 . y;
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Outline

@ Theory of quantum entanglement

Probabilistic conversion and catalysis

@ Entanglement detection
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Probabilistic conversion

* Probabilistic conversion: Alice and Bob are allowed to
post-select the outcomes of their local measurements, leading
to a conversion [y)Y*8 — |pY*8 with probability p
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Probabilistic conversion

* Probabilistic conversion: Alice and Bob are allowed to
post-select the outcomes of their local measurements, leading
to a conversion [y)Y*8 — |pY*8 with probability p

e Definition for general p*& and 48

 Kip"BK'
P(p"B — 0*B)=max{ Tr [Z K,-pABK’.Tl B — _2i KT _
i i Tr [ Kip”BK] |

* Maximum is taken over all (incomplete) sets of Kraus
operators {K;j} which are implementable via LOCC
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Probabilistic conversion

* Probabilistic conversion: Alice and Bob are allowed to
post-select the outcomes of their local measurements, leading
to a conversion [y)Y*8 — |pY*8 with probability p

e Pure states [y and |¢)"E:
Zn /a’l
P (lp)*® = 1¢)*®) = min
( ) le[1,n] Z —1Bj
* a; and g are the Schmidt coefficients of )" and |¢)?
sorted in decreasing order
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Catalytic conversion

If there is no LOCC protocol such that

i )

there might be a catalyst state |c)*'®" such that

"B @ c)AB" — |9y B @ |c)A'F
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Outline

@ Theory of quantum entanglement

Bell states

@ Entanglement detection
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Bell states

Bell states (or EPR states):

©F) = 5(100) +[11)), [WF) = (I01>+|10>)

o

|®7) = —=(100) - [11)), [V7) = (|01> - [10)).

o5l

SN
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SN

o5l
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Bell states

Bell states (or EPR states):

©F) = 5(100) +[11)), [WF) = (I01>+|10>)

5k

(|01> - [10)).

Sl 4

©7) = 55(100) = [11), [W7) =
* Reduced state of any Bell state: %]12
e For any single-qubit state p it holds 31> < p

® Theorem 2.1. = any Bell state can be converted into any
two-qubit pure state via LOCC
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Maximally entangled states

Bell states are also called maximally entangled states
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Maximally entangled states
Bell states are also called maximally entangled states
® For da = dg = d a state |W4) is maximally entangled if and

only if
Tra[[WgXWyl] = 1g.
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Maximally entangled states
Bell states are also called maximally entangled states
® For da = dg = d a state |W4) is maximally entangled if and

only if
Tra[[WgXWyl] = 1g.

¢ All maximally entangled states are equivalent to

d—
05 = Z i)
i=0

up to local unitary on one side:

Vo) = (Ue 1)[01) = (18 V) [])
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Outline

@ Theory of quantum entanglement

Entanglement for mixed states

@ Entanglement detection
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Entanglement for mixed states
Separable mixed states:

PphS = > pilviXuil @ Igi)oil

with p; > 0, 3 pi = 1, [¥i) € Ha and |¢;) € Hp.
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Entanglement for mixed states
Separable mixed states:
PphS = > pilviXuil @ Igi)oil
i
with p; > 0, 3;pi = 1, i) € Ha and |¢;) € Hp.

States which are not separable are called entangled

entang b2/

.

oo lile
(Y w{}/};/mj/
2 //
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Outline

@ Entanglement detection
Entanglement witnesses
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Entanglement witnesses

Entanglement witness: Hermitian matrix WAB such that

Tr| WA (W)l @ 16)(@])| = (W1 (9l) W (1) ® 1)) = 0
for any |¢) € Ha and |¢) € Hp
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Entanglement witnesses

Entanglement witness: Hermitian matrix WAB such that

Tr| WA (W)l @ 16)(@])| = (W1 (9l) W (1) ® 1)) = 0
for any |¢) € Ha and |¢) € Hp

® For any separable state psep we have

Te[WplS] = Tr [WAB (Z P Wil @ i) |]l

—Zp,Tr (W28 (il @ 1giXil)| = 0
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Entanglement witnesses

Entanglement witness: Hermitian matrix WAB such that

Tr| WA (W)l @ 16)(@])| = (W1 (9l) W (1) ® 1)) = 0
for any |¢) € Ha and |¢) € Hp

e For any separable state p% we have

Tr [WABp2B] = Tr [WAB (Z pi iyl @ |¢,-><¢,-|]l

= o Tr [W"B (iwil @ 1gi)(@il)| > 0
i
o If Tr[WABpAB] < 0, the state p*® must be entangled
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Entanglement witnesses

Theorem 3.1. For any entangled state p” there exists an entan-
glement witness such that Tr [WABpAB] <0.
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Entanglement witnesses

Theorem 3.1. For any entangled state p” there exists an entan-
glement witness such that Tr [WABpAB] <0.

\ ';/'//'///"," 7o /

~— (W,
>/ g

Interpretation of WAB: observable with expectation value
Tr [WABpAB]
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Entanglement witnesses
Example. Swap operation for ds = dg:

d—1
WA = 3" lixjl® i)l

i,j=0
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Example. Swap operation for ds = dg:

d—1
WA = 3" lixjl® i)l
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Entanglement witnesses
Example. Swap operation for ds = dg:

d—1
WA = 3" lixjl® i)l

ij=0
* WYy ®|p) = I¢) ® ), and thus

(Wle(gl) WA () ®19)) = (W@ (g]) (I9) ® 1)) = Kplg)F = 0

e W*B has negative eigenvalues:

1

bq/AE’ Yy = —
v NG

(WAB101) — WAB|10)) = — [W™)
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Entanglement witnesses
Example. Swap operation for ds = dg:

d—1
WA = 3" lixjl® i)l
ij=0
* WAy @) = |#) ® y), and thus
(Wi (¢l) W (1) ®19)) = (Wl @ () (Ig) ® ) = [wle) = 0

e W*B has negative eigenvalues:

WAB [y~) = % (WAB101) — WAB|10)) = — [W™)

e = W*B detects entanglement in [W~)
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