Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

2nd class March 9, 2022

Advanced quantum information

- Every Wednesday 15:15 17:00
- Literature:
 - Nielsen and Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press (2012)
 - Horodecki *et al.*, *Quantum entanglement*, Rev. Mod. Phys. **81**, 865 (2009)
- Howework and lecture notes: http://qot.cent.uw.edu.pl/teaching/
- · Homework to be submitted via email as a single pdf

Schmidt decomposition

• For any pure state $|\psi\rangle^{AB}$ there exists a product basis $\{|i\rangle \otimes |j\rangle\}$ such that

$$\ket{\psi}^{AB} = \sum_{i} \sqrt{\lambda_{i}} \ket{i} \otimes \ket{i}$$

with $\lambda_i \geq 0$

Schmidt decomposition

• For any pure state $|\psi\rangle^{AB}$ there exists a product basis $\{|i\rangle \otimes |j\rangle\}$ such that

$$\ket{\psi}^{AB} = \sum_{i} \sqrt{\lambda_{i}} \ket{i} \otimes \ket{i}$$

with $\lambda_i \geq 0$

• The numbers λ_i are called **Schmidt coefficients** of $|\psi\rangle^{AB}$

Schmidt decomposition

• For any pure state $|\psi\rangle^{AB}$ there exists a product basis $\{|i\rangle \otimes |j\rangle\}$ such that

$$\ket{\psi}^{\mathcal{AB}} = \sum_{i} \sqrt{\lambda_{i}} \ket{i} \otimes \ket{i}$$

with $\lambda_i \geq 0$

- The numbers λ_i are called **Schmidt coefficients** of $|\psi\rangle^{AB}$
- Schmidt coefficients are equal to the eigenvalues of the reduced states Tr_A[|ψ⟩⟨ψ|^{AB}] and Tr_B[|ψ⟩⟨ψ|^{AB}]

Outline

 Theory of quantum entanglement Local operations and classical communication Pure state conversion via LOCC Probabilistic conversion and catalysis Bell states Entanglement for mixed states

Entanglement witnesses

Outline

Theory of quantum entanglement Local operations and classical communication

2 Entanglement detection

Entanglement witnesses

Any LOCC protocol can be decomposed into the following steps:

• Alice performs a local measurement $\{K_i\}$ on her subsystem.

- Alice performs a local measurement $\{K_i\}$ on her subsystem.
- The outcome *i* of Alice's measurement is communicated to Bob via a classical channel.

- Alice performs a local measurement $\{K_i\}$ on her subsystem.
- 2 The outcome *i* of Alice's measurement is communicated to Bob via a classical channel.
- **3** Bob performs a local measurement $\{L_j(i)\}$ on his subsystem, which depends on Alice's outcome *i*.

- Alice performs a local measurement $\{K_i\}$ on her subsystem.
- 2 The outcome *i* of Alice's measurement is communicated to Bob via a classical channel.
- **3** Bob performs a local measurement $\{L_j(i)\}$ on his subsystem, which depends on Alice's outcome *i*.
- The outcome *j* of Bob's measurement is communicated classically to Alice.

- Alice performs a local measurement $\{K_i\}$ on her subsystem.
- 2 The outcome *i* of Alice's measurement is communicated to Bob via a classical channel.
- **3** Bob performs a local measurement $\{L_j(i)\}$ on his subsystem, which depends on Alice's outcome *i*.
- The outcome *j* of Bob's measurement is communicated classically to Alice.
- Alice performs a local measurement on her subsystem which can depend on all outcomes of all previous measurements, and the process starts over at step 2.

Outline

 Theory of quantum entanglement Pure state conversion via LOCC

2 Entanglement detection

Entanglement witnesses

• Assume that Alice and Bob share the state $|\psi\rangle^{AB}$

- Assume that Alice and Bob share the state $|\psi\rangle^{AB}$
- Which other states $|\phi\rangle^{AB}$ can be obtained via LOCC?

- Assume that Alice and Bob share the state $\ket{\psi}^{AB}$
- Which other states $|\phi\rangle^{AB}$ can be obtained via LOCC?

Proposition 2.1. Suppose $|\psi\rangle^{AB}$ can be transformed into $|\phi\rangle^{AB}$ via LOCC. Then this transformation can be achieved by a protocol involving just the following steps: Alice performs a measurement with Kraus operators $\{K_j\}$, sends the result *j* to Bob, who applies a conditional unitary U_j on his system.

Let $K_j = \sum_{k,l} K_{j,kl} |k\rangle \langle l|$ be a Kraus operator of Bob expanded in the Schmidt basis of $|\psi\rangle = \sum_i \sqrt{\lambda_i} |i\rangle \otimes |i\rangle$. The post-measurement state $|\mu_j\rangle$ is given as

$$|\mu_{j}\rangle = \frac{\mathbb{1} \otimes K_{j} |\psi\rangle}{\sqrt{\rho_{j}}} = \frac{\sum_{k,l} K_{j,kl} \sqrt{\lambda_{l}} |l\rangle \otimes |k\rangle}{\sqrt{\rho_{j}}}$$

with probability

$$p_j = \langle \psi | \mathbb{1} \otimes K_j^{\dagger} K_j | \psi \rangle = \sum_{k,l} \lambda_l | K_{j,kl} |^2.$$

Let $K_j = \sum_{k,l} K_{j,kl} |k\rangle \langle l|$ be a Kraus operator of Bob expanded in the Schmidt basis of $|\psi\rangle = \sum_i \sqrt{\lambda_i} |i\rangle \otimes |i\rangle$. The post-measurement state $|\mu_j\rangle$ is given as

$$|\mu_{j}\rangle = \frac{\mathbb{1} \otimes K_{j} |\psi\rangle}{\sqrt{\rho_{j}}} = \frac{\sum_{k,l} K_{j,kl} \sqrt{\lambda_{l}} |l\rangle \otimes |k\rangle}{\sqrt{\rho_{j}}}$$

with probability

$$p_j = \langle \psi | \mathbb{1} \otimes K_j^{\dagger} K_j | \psi \rangle = \sum_{k,l} \lambda_l | K_{j,kl} |^2.$$

Assume now that instead Alice performs a measurement with Kraus operator $L_i = \sum_{k,l} K_{i,kl} |k\rangle \langle l|$, leading to the state

$$|\nu_{j}\rangle = \frac{L_{j} \otimes \mathbb{1} |\psi\rangle}{\sqrt{p_{j}}} = \frac{\sum_{k,l} K_{j,kl} \sqrt{\lambda_{l}} |k\rangle \otimes |l\rangle}{\sqrt{p_{j}}}$$

with the same probability p_i .

Note that $|\mu_j\rangle$ and $|\nu_j\rangle$ are the same up to interchanging *A* and *B*, which by Schmidt decomposition implies that

$$egin{aligned} &|\mu_j
angle &= \sum_i \ \sqrt{lpha_{ij}} \left(U_j \,|i
angle
ight) \otimes \left(V_j \,|i
angle
ight), \ &|
u_j
angle &= \sum_i \ \sqrt{lpha_{ij}} \left(V_j \,|i
angle
ight) \otimes \left(U_j \,|i
angle
ight). \end{aligned}$$

for some $\alpha_{ij} \ge 0$ and local unitaries U_j and V_j , and thus

$$|\mu_j
angle = (U_j V_j^{\dagger} \otimes V_j U_j^{\dagger}) |\nu_j
angle.$$

Thus, Bob performing a measurement $\{K_j\}$ on $|\psi\rangle$ is equivalent to Alice performing a measurement $\{U_j V_j^{\dagger} L_j\}$, followed by Bob performing the unitary $V_j U_j^{\dagger}$.

• A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob

- A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob
- If Alice and Bob perform an LOCC protocol consisting of many rounds of measurements and classical communication, we replace each round involving Bob's measurement by a corresponding measurement on Alice's side

- A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob
- If Alice and Bob perform an LOCC protocol consisting of many rounds of measurements and classical communication, we replace each round involving Bob's measurement by a corresponding measurement on Alice's side
- In this way, any LOCC protocol transforming $|\psi\rangle^{AB}$ into $|\phi\rangle^{AB}$ can be simulated by a single measurement of Alice, followed by conditional unitary on Bob's side

Majorization:

• Consider two real *d*-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order

Majorization:

- Consider two real *d*-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x} < \vec{y}$ if

$$\sum_{i=1}^k x_i \le \sum_{i=1}^k y_i$$

for all $k \in [1, d-1]$, and $\sum_{i=1}^{d} x_i = \sum_{i=1}^{d} y_i$

Majorization:

- Consider two real *d*-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x} < \vec{y}$ if

$$\sum_{i=1}^k x_i \le \sum_{i=1}^k y_i$$

for all $k \in [1, d - 1]$, and $\sum_{i=1}^{d} x_i = \sum_{i=1}^{d} y_i$

• For a Hermitian matrix H let $\vec{\lambda}_H$ be the vector of eigenvalues of H in decreasing order

Majorization:

- Consider two real *d*-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x} < \vec{y}$ if

$$\sum_{i=1}^k x_i \le \sum_{i=1}^k y_i$$

for all $k \in [1, d - 1]$, and $\sum_{i=1}^{d} x_i = \sum_{i=1}^{d} y_i$

- For a Hermitian matrix H let $\vec{\lambda}_H$ be the vector of eigenvalues of H in decreasing order
- For two Hermitian matrices *H* and *K* we write H < K if $\vec{\lambda}_H < \vec{\lambda}_K$

Proposition 2.2. Let *H* and *K* be Hermitian matrices. Then H < K if and only if there is a probability distribution p_j and unitary matrices U_j such that

$$H=\sum_{j}p_{j}U_{j}KU_{j}^{\dagger}.$$

Proposition 2.2. Let *H* and *K* be Hermitian matrices. Then H < K if and only if there is a probability distribution p_j and unitary matrices U_j such that

$$H = \sum_{j} p_{j} U_{j} K U_{j}^{\dagger}.$$

Theorem 2.1. (Nielsen's Theorem) There exists an LOCC protocol transforming $|\psi\rangle^{AB}$ into $|\phi\rangle^{AB}$ if and only if $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, where $\vec{\lambda}_{\psi}$ denotes the vector with eigenvalues of the reduced state $\text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ in decreasing order.

• Suppose $|\psi\rangle^{AB}$ can be transformed into $|\phi\rangle^{AB}$ via LOCC.

- Suppose $|\psi\rangle^{AB}$ can be transformed into $|\phi\rangle^{AB}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators {*K_j*} and Bob applies local unitaries {*U_j*}.

- Suppose $|\psi\rangle^{AB}$ can be transformed into $|\phi\rangle^{AB}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators {*K_j*} and Bob applies local unitaries {*U_j*}.
- After Alice's measurement, the total post-measurement state is equal to |φ⟩^{AB} up to local unitaries on Bob's side:

$$K_{j} \otimes \mathbb{1} \ket{\psi}^{AB} = \sqrt{p_{j}} \mathbb{1} \otimes U_{j}^{\dagger} \ket{\phi}^{AB}.$$

- Suppose $|\psi\rangle^{AB}$ can be transformed into $|\phi\rangle^{AB}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators {*K_j*} and Bob applies local unitaries {*U_j*}.
- After Alice's measurement, the total post-measurement state is equal to |φ⟩^{AB} up to local unitaries on Bob's side:

$$K_j \otimes \mathbb{1} \ket{\psi}^{AB} = \sqrt{p_j} \mathbb{1} \otimes U_j^{\dagger} \ket{\phi}^{AB}.$$

• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• By polar decomposition there exists a unitary V_j such that

$$K_j \sqrt{\rho_{\psi}} = \sqrt{K_j \rho_{\psi} K_j^{\dagger}} V_j = \sqrt{p_j \rho_{\phi}} V_j.$$

• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• By polar decomposition there exists a unitary V_j such that

$$K_j \sqrt{\rho_{\psi}} = \sqrt{K_j \rho_{\psi} K_j^{\dagger}} V_j = \sqrt{\rho_j \rho_{\phi}} V_j.$$

· Multiplying this equation with its adjoint from the left, we get

$$\sqrt{\rho_{\psi}}K_{j}^{\dagger}K_{j}\sqrt{\rho_{\psi}}=p_{j}V_{j}^{\dagger}\rho_{\phi}V_{j}.$$
• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• By polar decomposition there exists a unitary V_j such that

$$K_j \sqrt{\rho_{\psi}} = \sqrt{K_j \rho_{\psi} K_j^{\dagger}} V_j = \sqrt{\rho_j \rho_{\phi}} V_j.$$

· Multiplying this equation with its adjoint from the left, we get

$$\sqrt{
ho_{\psi}} K_j^{\dagger} K_j \sqrt{
ho_{\psi}} = p_j V_j^{\dagger}
ho_{\phi} V_j.$$

• Taking sum over *j* and using $\sum_{j} K_{j}^{\dagger} K_{j} = \mathbb{1}$ we obtain

$$\rho_{\psi} = \sum_{j} p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}.$$

• Defining $\rho_{\psi} = \text{Tr}_{B}[|\psi\rangle\langle\psi|^{AB}]$ and $\rho_{\phi} = \text{Tr}_{B}[|\phi\rangle\langle\phi|^{AB}]$, we get

$$K_{j}\rho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}$$

with $p_j = \text{Tr}[K_j \rho_{\psi} K_j^{\dagger}].$

• By polar decomposition there exists a unitary V_j such that

$$K_j \sqrt{\rho_{\psi}} = \sqrt{K_j \rho_{\psi} K_j^{\dagger}} V_j = \sqrt{\rho_j \rho_{\phi}} V_j.$$

· Multiplying this equation with its adjoint from the left, we get

$$\sqrt{\rho_{\psi}}K_{j}^{\dagger}K_{j}\sqrt{\rho_{\psi}}=p_{j}V_{j}^{\dagger}\rho_{\phi}V_{j}.$$

• Taking sum over *j* and using $\sum_{j} K_{j}^{\dagger} K_{j} = \mathbb{1}$ we obtain

$$\rho_{\psi} = \sum_{j} p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}.$$

• By proposition 2.2 we have $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$.

• Suppose that $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, and thus $\rho_{\psi} < \rho_{\phi}$.

- Suppose that $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, and thus $\rho_{\psi} < \rho_{\phi}$.
- By proposition 2.2

$$ho_{\psi} = \sum_{j} p_{j} U_{j}
ho_{\phi} U_{j}^{\dagger}$$

for some probabilities p_j and unitaries U_j .

- Suppose that $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, and thus $\rho_{\psi} < \rho_{\phi}$.
- By proposition 2.2

$$ho_{\psi} = \sum_{j} p_{j} U_{j}
ho_{\phi} U_{j}^{\dagger}$$

for some probabilities p_j and unitaries U_j .

• If ρ_{ψ} is invertible, we define

$$K_j := \sqrt{p_j
ho_\phi} U_j^{\dagger}
ho_\psi^{-1/2}.$$

- Suppose that $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, and thus $\rho_{\psi} < \rho_{\phi}$.
- By proposition 2.2

$$ho_{\psi} = \sum_{j} p_{j} U_{j}
ho_{\phi} U_{j}^{\dagger}$$

for some probabilities p_j and unitaries U_j .

• If ρ_{ψ} is invertible, we define

$$K_j := \sqrt{p_j
ho_\phi} U_j^\dagger
ho_\psi^{-1/2}.$$

It holds that

$$\sum_{j} K_{j}^{\dagger} K_{j} = \rho_{\psi}^{-1/2} \left(\sum_{j} p_{j} U_{j} \rho_{\phi} U_{j}^{\dagger} \right) \rho_{\psi}^{-1/2} = \rho_{\psi}^{-1/2} \rho_{\psi} \rho_{\psi}^{-1/2} = \mathbb{1},$$

thus K_i are valid Kraus operators.

• Suppose Alice performs the measurement $\{K_i\}$.

- Suppose Alice performs the measurement $\{K_j\}$.
- Recalling that $K_j = \sqrt{\rho_j \rho_\phi} U_j^\dagger \rho_\psi^{-1/2}$ it follows

$$K_{j}\rho_{\psi}K_{j}^{\dagger}=p_{j}\rho_{\phi}.$$

- Suppose Alice performs the measurement $\{K_j\}$.
- Recalling that $K_j = \sqrt{\rho_j \rho_\phi} U_j^{\dagger} \rho_{\psi}^{-1/2}$ it follows

$$K_{j}
ho_{\psi}K_{j}^{\dagger}=p_{j}
ho_{\phi}.$$

• When Alice applies the measurement $\{K_j\}$ to the total state $|\psi\rangle^{AB}$, she obtains the reduced state ρ_{ϕ} with probability p_j .

- Suppose Alice performs the measurement $\{K_j\}$.
- Recalling that $K_j = \sqrt{\rho_j \rho_\phi} U_j^{\dagger} \rho_{\psi}^{-1/2}$ it follows

$$K_{j}\rho_{\psi}K_{j}^{\dagger}=p_{j}\rho_{\phi}.$$

- When Alice applies the measurement $\{K_j\}$ to the total state $|\psi\rangle^{AB}$, she obtains the reduced state ρ_{ϕ} with probability p_j .
- Since all purifications of ρ_φ are equivalent up to unitary on Bob's side, it follows that there exist unitaries U_j on Bob's side such that

$$K_{j}\otimes \mathbb{1}\ket{\psi}^{AB}=\sqrt{p_{j}}\mathbb{1}\otimes U_{j}\ket{\phi}^{AB}.$$

- Suppose Alice performs the measurement $\{K_j\}$.
- Recalling that $K_j = \sqrt{\rho_j \rho_\phi} U_j^{\dagger} \rho_{\psi}^{-1/2}$ it follows

$$K_{j}\rho_{\psi}K_{j}^{\dagger}=p_{j}\rho_{\phi}.$$

- When Alice applies the measurement $\{K_j\}$ to the total state $|\psi\rangle^{AB}$, she obtains the reduced state ρ_{ϕ} with probability p_j .
- Since all purifications of ρ_φ are equivalent up to unitary on Bob's side, it follows that there exist unitaries U_j on Bob's side such that

$$K_{j}\otimes \mathbb{1}\ket{\psi}^{AB}=\sqrt{p_{j}}\mathbb{1}\otimes U_{j}\ket{\phi}^{AB}.$$

• Thus, if Alice applies measurement $\{K_j\}$ to the state $|\psi\rangle^{AB}$, communicates the measurement outcome *j* to Bob, and he performs U_j^{\dagger} , they achieve the conversion $|\psi\rangle^{AB} \rightarrow |\phi\rangle^{AB}$.

Pure state conversion

Exercise: Consider the states

$$\begin{split} |\psi\rangle^{AB} &= \sqrt{0.4} \, |00\rangle + \sqrt{0.4} \, |11\rangle + \sqrt{0.1} \, |22\rangle + \sqrt{0.1} \, |33\rangle \\ |\phi\rangle^{AB} &= \sqrt{0.5} \, |00\rangle + \sqrt{0.25} \, |11\rangle + \sqrt{0.25} \, |22\rangle \end{split}$$

Is the conversion $|\psi\rangle^{AB} \to |\phi\rangle^{AB}$ or $|\phi\rangle^{AB} \to |\psi\rangle^{AB}$ possible via LOCC?

Hint: Check if $\vec{\lambda}_{\psi} < \vec{\lambda}_{\phi}$, recalling that $\vec{x} < \vec{y}$ if

$$\sum_{i=1}^k x_i \le \sum_{i=1}^k y_i$$

for all $k \in [1, d - 1]$, and $\sum_{i=1}^{d} x_i = \sum_{i=1}^{d} y_i$

Outline

Theory of quantum entanglement

Probabilistic conversion and catalysis

2 Entanglement detection

Entanglement witnesses

Probabilistic conversion

• Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{AB} \rightarrow |\phi\rangle^{AB}$ with probability p

Probabilistic conversion

- Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{AB} \rightarrow |\phi\rangle^{AB}$ with probability p
- Definition for general $\rho^{\rm AB}$ and $\sigma^{\rm AB}$

$$P(\rho^{AB} \to \sigma^{AB}) = \max_{\{K_i\}} \left\{ \operatorname{Tr}\left[\sum_{i} K_i \rho^{AB} K_i^{\dagger}\right] : \sigma^{AB} = \frac{\sum_{i} K_i \rho^{AB} K_i^{\dagger}}{\operatorname{Tr}\left[\sum_{i} K_i \rho^{AB} K_i^{\dagger}\right]} \right\}$$

 Maximum is taken over all (incomplete) sets of Kraus operators {*K_i*} which are implementable via LOCC

Probabilistic conversion

- Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{AB} \rightarrow |\phi\rangle^{AB}$ with probability p
- Pure states $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$:

$$P(|\psi\rangle^{AB} \to |\phi\rangle^{AB}) = \min_{l \in [1,n]} \frac{\sum_{i=l}^{n} \alpha_i}{\sum_{j=l}^{n} \beta_j}$$

• α_i and β_j are the Schmidt coefficients of $|\psi\rangle^{AB}$ and $|\phi\rangle^{AB}$ sorted in decreasing order

Catalytic conversion

If there is no LOCC protocol such that

$$|\psi\rangle^{AB} \to |\phi\rangle^{AB}$$

there might be a catalyst state $|c\rangle^{A'B'}$ such that

$$|\psi\rangle^{AB}\otimes|c\rangle^{A^{\prime}B^{\prime}}\rightarrow|\phi\rangle^{AB}\otimes|c\rangle^{A^{\prime}B^{\prime}}$$

Outline

Theory of quantum entanglement

Bell states

2 Entanglement detection

Entanglement witnesses

Bell states (or EPR states):

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle), \quad |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle), \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle), \quad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle). \end{split}$$

Bell states (or EPR states):

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle), \quad |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle), \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle), \quad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle). \end{split}$$

• Reduced state of any Bell state: $\frac{1}{2}\mathbb{1}_2$

Bell states (or EPR states):

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle), \quad |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle), \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle), \quad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle). \end{split}$$

- Reduced state of any Bell state: $\frac{1}{2}\mathbb{1}_2$
- For any single-qubit state ρ it holds $\frac{1}{2}\mathbb{1}_2 \prec \rho$

Bell states (or EPR states):

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle), \quad |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle), \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle), \quad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle). \end{split}$$

- Reduced state of any Bell state: $\frac{1}{2}\mathbb{1}_2$
- For any single-qubit state ρ it holds $\frac{1}{2}\mathbb{1}_2 \prec \rho$
- Theorem 2.1. ⇒ any Bell state can be converted into any two-qubit pure state via LOCC

Maximally entangled states

Bell states are also called maximally entangled states

Maximally entangled states

Bell states are also called maximally entangled states

For d_A = d_B = d a state |Ψ_d⟩ is maximally entangled if and only if

 $\mathsf{Tr}_{\mathcal{A}}[|\Psi_d\rangle\langle\Psi_d|] = \mathbb{1}_d.$

Maximally entangled states

Bell states are also called maximally entangled states

For d_A = d_B = d a state |Ψ_d⟩ is maximally entangled if and only if

$$\operatorname{Tr}_{A}[|\Psi_{d}\rangle\langle\Psi_{d}|] = \mathbb{1}_{d}.$$

• All maximally entangled states are equivalent to

$$|\Phi_{d}^{+}\rangle = rac{1}{\sqrt{d}}\sum_{i=0}^{d-1}|ii
angle$$

up to local unitary on one side:

$$|\Psi_d\rangle = (U \otimes \mathbb{1}) |\Phi_d^+\rangle = (\mathbb{1} \otimes V) |\Phi_d^+\rangle$$

Outline

Theory of quantum entanglement

Entanglement for mixed states

2 Entanglement detection Entanglement witnesses

Entanglement for mixed states

Separable mixed states:

$$\rho_{\mathrm{sep}}^{\mathsf{AB}} = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| \otimes |\phi_{i}\rangle\langle\phi_{i}|$$

with $p_i \ge 0$, $\sum_i p_i = 1$, $|\psi_i\rangle \in \mathcal{H}_A$ and $|\phi_i\rangle \in \mathcal{H}_B$.

Entanglement for mixed states

Separable mixed states:

$$\rho_{\mathrm{sep}}^{\mathsf{AB}} = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| \otimes |\phi_{i}\rangle\langle\phi_{i}|$$

with $p_i \ge 0$, $\sum_i p_i = 1$, $|\psi_i\rangle \in \mathcal{H}_A$ and $|\phi_i\rangle \in \mathcal{H}_B$.

States which are not separable are called entangled

entangled 'separable

Outline

Theory of quantum entanglement

2 Entanglement detection Entanglement witnesses

Outline

Theory of quantum entanglement

2 Entanglement detection Entanglement witnesses

Entanglement witness: Hermitian matrix W^{AB} such that

 $\mathsf{Tr}\left[W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\langle\psi|\otimes|\phi\rangle\langle\phi|\right)\right] = \left(\langle\psi|\otimes\langle\phi|\right)W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\otimes|\phi\rangle\right) \geq 0$

for any $|\psi\rangle \in \mathcal{H}_A$ and $|\phi\rangle \in \mathcal{H}_B$

Entanglement witness: Hermitian matrix WAB such that

 $\mathsf{Tr}\left[W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\langle\psi|\otimes|\phi\rangle\langle\phi|\right)\right] = \left(\langle\psi|\otimes\langle\phi|\right)W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\otimes|\phi\rangle\right) \geq 0$

for any $|\psi\rangle \in \mathcal{H}_A$ and $|\phi\rangle \in \mathcal{H}_B$

- For any separable state $\rho_{\rm sep}^{\rm AB}$ we have

$$\operatorname{Tr}\left[W^{AB}\rho_{\operatorname{sep}}^{AB}\right] = \operatorname{Tr}\left[W^{AB}\left(\sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|\otimes|\phi_{i}\rangle\langle\phi_{i}|\right)\right]$$
$$= \sum_{i}p_{i}\operatorname{Tr}\left[W^{AB}\left(|\psi_{i}\rangle\langle\psi_{i}|\otimes|\phi_{i}\rangle\langle\phi_{i}|\right)\right] \ge 0$$

Entanglement witness: Hermitian matrix WAB such that

 $\mathsf{Tr}\left[W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\langle\psi|\otimes|\phi\rangle\langle\phi|\right)\right] = \left(\langle\psi|\otimes\langle\phi|\right)W^{\mathsf{A}\mathsf{B}}\left(|\psi\rangle\otimes|\phi\rangle\right) \geq 0$

for any $|\psi\rangle \in \mathcal{H}_A$ and $|\phi\rangle \in \mathcal{H}_B$

- For any separable state $\rho_{\rm sep}^{\rm AB}$ we have

$$\operatorname{Tr}\left[W^{AB}\rho_{\operatorname{sep}}^{AB}\right] = \operatorname{Tr}\left[W^{AB}\left(\sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|\otimes|\phi_{i}\rangle\langle\phi_{i}|\right)\right]$$
$$= \sum_{i}p_{i}\operatorname{Tr}\left[W^{AB}\left(|\psi_{i}\rangle\langle\psi_{i}|\otimes|\phi_{i}\rangle\langle\phi_{i}|\right)\right] \ge 0$$

• If $\operatorname{Tr} \left[W^{AB} \rho^{AB} \right] < 0$, the state ρ^{AB} must be entangled

Theorem 3.1. For any entangled state ρ^{AB} there exists an entanglement witness such that $\operatorname{Tr} \left[W^{AB} \rho^{AB} \right] < 0.$

Theorem 3.1. For any entangled state ρ^{AB} there exists an entanglement witness such that $\text{Tr} \left[W^{AB} \rho^{AB} \right] < 0.$

· Sent Tr(Wgend)CO Tr(Wpep) > 0

Theorem 3.1. For any entangled state ρ^{AB} there exists an entanglement witness such that $\text{Tr} \left[W^{AB} \rho^{AB} \right] < 0.$

Interpretation of W^{AB} : observable with expectation value $\operatorname{Tr}\left[W^{AB}\rho^{AB}\right]$
Example. Swap operation for $d_A = d_B$:

$$W^{AB} = \sum_{i,j=0}^{d-1} |i
angle \langle j| \otimes |j
angle \langle i|$$

Example. Swap operation for $d_A = d_B$:

$$W^{AB} = \sum_{i,j=0}^{d-1} |i
angle \langle j| \otimes |j
angle \langle i|$$

•
$$W^{AB} \ket{\psi} \otimes \ket{\phi} = \ket{\phi} \otimes \ket{\psi}$$
, and thus

 $\left(\left\langle\psi\right|\otimes\left\langle\phi\right|\right)W^{AB}\left(\left|\psi\right\rangle\otimes\left|\phi\right\rangle\right)=\left(\left\langle\psi\right|\otimes\left\langle\phi\right|\right)\left(\left|\phi\right\rangle\otimes\left|\psi\right\rangle\right)=\left|\left\langle\psi\right|\phi\right\rangle\right|^{2}\geq0$

Example. Swap operation for $d_A = d_B$:

$$W^{AB} = \sum_{i,j=0}^{d-1} |i
angle \langle j| \otimes |j
angle \langle i|$$

•
$$W^{AB} |\psi\rangle \otimes |\phi\rangle = |\phi\rangle \otimes |\psi\rangle$$
, and thus
 $(\langle \psi | \otimes \langle \phi |) W^{AB} (|\psi\rangle \otimes |\phi\rangle) = (\langle \psi | \otimes \langle \phi |) (|\phi\rangle \otimes |\psi\rangle) = |\langle \psi | \phi \rangle|^2 \ge 0$

• W^{AB} has negative eigenvalues:

$$|W^{AB}|\Psi^{-}
angle = rac{1}{\sqrt{2}} \left(W^{AB} \ket{01} - W^{AB} \ket{10}
ight) = - \ket{\Psi^{-}}$$

Example. Swap operation for $d_A = d_B$:

$$W^{AB} = \sum_{i,j=0}^{d-1} |i
angle \langle j| \otimes |j
angle \langle i|$$

•
$$W^{AB} |\psi\rangle \otimes |\phi\rangle = |\phi\rangle \otimes |\psi\rangle$$
, and thus
 $(\langle \psi | \otimes \langle \phi |) W^{AB} (|\psi\rangle \otimes |\phi\rangle) = (\langle \psi | \otimes \langle \phi |) (|\phi\rangle \otimes |\psi\rangle) = |\langle \psi | \phi \rangle|^2 \ge 0$

• W^{AB} has negative eigenvalues:

$$|W^{AB}|\Psi^{-}
angle = rac{1}{\sqrt{2}} \left(W^{AB} \ket{01} - W^{AB} \ket{10}
ight) = - \ket{\Psi^{-}}$$

• \Rightarrow W^{AB} detects entanglement in $|\Psi^-\rangle$