Advanced quantum information: entanglement and nonlocality

Alexander Streltsov

2nd class
March 9, 2022

Advanced quantum information

- Every Wednesday 15:15-17:00
- Literature:
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2012)
- Horodecki et al., Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009)
- Howework and lecture notes: http://qot.cent.uw.edu.pl/teaching/
- Homework to be submitted via email as a single pdf

Schmidt decomposition

- For any pure state $|\psi\rangle^{A B}$ there exists a product basis $\{|i\rangle \otimes|j\rangle\}$ such that

$$
|\psi\rangle^{A B}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

with $\lambda_{i} \geq 0$

Schmidt decomposition

- For any pure state $|\psi\rangle^{A B}$ there exists a product basis $\{|i\rangle \otimes|j\rangle\}$ such that

$$
|\psi\rangle^{A B}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

with $\lambda_{i} \geq 0$

- The numbers λ_{i} are called Schmidt coefficients of $|\psi\rangle^{A B}$

Schmidt decomposition

- For any pure state $|\psi\rangle^{A B}$ there exists a product basis $\{|i\rangle \otimes|j\rangle\}$ such that

$$
|\psi\rangle^{A B}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle
$$

with $\lambda_{i} \geq 0$

- The numbers λ_{i} are called Schmidt coefficients of $|\psi\rangle^{A B}$
- Schmidt coefficients are equal to the eigenvalues of the reduced states $\operatorname{Tr}_{A}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.

Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome i of Alice's measurement is communicated to Bob via a classical channel.

Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome i of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome i.

Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome i of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome i.
(4) The outcome j of Bob's measurement is communicated classically to Alice.

Local operations and classical communication (LOCC)

Any LOCC protocol can be decomposed into the following steps:
(1) Alice performs a local measurement $\left\{K_{i}\right\}$ on her subsystem.
(2) The outcome i of Alice's measurement is communicated to Bob via a classical channel.
(3) Bob performs a local measurement $\left\{L_{j}(i)\right\}$ on his subsystem, which depends on Alice's outcome i.
(4) The outcome j of Bob's measurement is communicated classically to Alice.

5 Alice performs a local measurement on her subsystem which can depend on all outcomes of all previous measurements, and the process starts over at step 2.

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Pure state conversion via LOCC

- Assume that Alice and Bob share the state $|\psi\rangle^{A B}$

Pure state conversion via LOCC

- Assume that Alice and Bob share the state $|\psi\rangle^{A B}$
- Which other states $|\phi\rangle^{A B}$ can be obtained via LOCC?

Pure state conversion via LOCC

- Assume that Alice and Bob share the state $|\psi\rangle^{A B}$
- Which other states $|\phi\rangle^{A B}$ can be obtained via LOCC?

> Proposition 2.1. Suppose $|\psi\rangle^{A B}$ can be transformed into $|\phi\rangle^{A B}$ via LOCC. Then this transformation can be achieved by a protocol involving just the following steps: Alice performs a measurement with Kraus operators $\left\{K_{j}\right\}$, sends the result j to Bob, who applies a conditional unitary U_{j} on his system.

Pure state conversion via LOCC

Proof of Proposition 2.1

Let $K_{j}=\sum_{k, l} K_{j, k l}|k\rangle\langle\||$ be a Kraus operator of Bob expanded in the Schmidt basis of $|\psi\rangle=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle$. The post-measurement state $\left|\mu_{j}\right\rangle$ is given as

$$
\left|\mu_{j}\right\rangle=\frac{\mathbb{1} \otimes K_{j}|\psi\rangle}{\sqrt{p_{j}}}=\frac{\sum_{k, I} K_{j, k l} \sqrt{\lambda_{l}}|I\rangle \otimes|k\rangle}{\sqrt{D_{j}}}
$$

with probability

$$
p_{j}=\langle\psi| \mathbb{1} \otimes K_{j}^{\dagger} K_{j}|\psi\rangle=\sum_{k, l} \lambda_{l}\left|K_{j, k \mid}\right|^{2}
$$

Proof of Proposition 2.1

Let $K_{j}=\sum_{k, l} K_{j, k l}|k\rangle\langle\||$ be a Kraus operator of Bob expanded in the Schmidt basis of $|\psi\rangle=\sum_{i} \sqrt{\lambda_{i}}|i\rangle \otimes|i\rangle$. The post-measurement state $\left|\mu_{j}\right\rangle$ is given as

$$
\left|\mu_{j}\right\rangle=\frac{\mathbb{1} \otimes K_{j}|\psi\rangle}{\sqrt{p_{j}}}=\frac{\sum_{k, I} K_{j, k l} \sqrt{\lambda_{l}}|I\rangle \otimes|k\rangle}{\sqrt{p_{j}}}
$$

with probability

$$
p_{j}=\langle\psi| \mathbb{1} \otimes K_{j}^{\dagger} K_{j}|\psi\rangle=\sum_{k, l} \lambda_{l}\left|K_{j, k \mid}\right|^{2}
$$

Assume now that instead Alice performs a measurement with Kraus operator $L_{j}=\sum_{k, l} K_{j, k \mid}|k\rangle\langle\|$, leading to the state

$$
\left|v_{j}\right\rangle=\frac{L_{j} \otimes \mathbb{1}|\psi\rangle}{\sqrt{p_{j}}}=\frac{\sum_{k, l} K_{j, k l} \sqrt{\lambda_{l}}|k\rangle \otimes|I\rangle}{\sqrt{p_{j}}}
$$

with the same probability p_{j}.

Proof of Proposition 2.1

Note that $\left|\mu_{j}\right\rangle$ and $\left|v_{j}\right\rangle$ are the same up to interchanging A and B, which by Schmidt decomposition implies that

$$
\begin{aligned}
& \left|\mu_{j}\right\rangle=\sum_{i} \sqrt{\alpha_{i j}}\left(U_{j}|i\rangle\right) \otimes\left(V_{j}|i\rangle\right), \\
& \left|v_{j}\right\rangle=\sum_{i} \sqrt{\alpha_{i j}}\left(V_{j}|i\rangle\right) \otimes\left(U_{j}|i\rangle\right)
\end{aligned}
$$

for some $\alpha_{i j} \geq 0$ and local unitaries U_{j} and V_{j}, and thus

$$
\left|\mu_{j}\right\rangle=\left(U_{j} V_{j}^{\dagger} \otimes V_{j} U_{j}^{\dagger}\right)\left|v_{j}\right\rangle
$$

Thus, Bob performing a measurement $\left\{K_{j}\right\}$ on $|\psi\rangle$ is equivalent to AIice performing a measurement $\left\{U_{j} V_{j}^{\dagger} L_{j}\right\}$, followed by Bob performing the unitary $V_{j} U_{j}^{\dagger}$.

Proof of Proposition 2.1

- A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob

Proof of Proposition 2.1

- A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob
- If Alice and Bob perform an LOCC protocol consisting of many rounds of measurements and classical communication, we replace each round involving Bob's measurement by a corresponding measurement on Alice's side

Proof of Proposition 2.1

- A measurement by Bob on a pure state can be simulated by a measurement by Alice, and a conditional unitary by Bob
- If Alice and Bob perform an LOCC protocol consisting of many rounds of measurements and classical communication, we replace each round involving Bob's measurement by a corresponding measurement on Alice's side
- In this way, any LOCC protocol transforming $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ can be simulated by a single measurement of Alice, followed by conditional unitary on Bob's side

Pure state conversion via LOCC

Majorization:

- Consider two real d-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order

Pure state conversion via LOCC

Majorization:

- Consider two real d-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x}<\vec{y}$ if

$$
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}
$$

for all $k \in[1, d-1]$, and $\sum_{i=1}^{d} x_{i}=\sum_{i=1}^{d} y_{i}$

Pure state conversion via LOCC

Majorization:

- Consider two real d-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x}<\vec{y}$ if

$$
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}
$$

for all $k \in[1, d-1]$, and $\sum_{i=1}^{d} x_{i}=\sum_{i=1}^{d} y_{i}$

- For a Hermitian matrix H let $\vec{\lambda}_{H}$ be the vector of eigenvalues of H in decreasing order

Pure state conversion via LOCC

Majorization:

- Consider two real d-dimensional vectors \vec{x} and \vec{y} with elements in decreasing order
- Then $\vec{x}<\vec{y}$ if

$$
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}
$$

for all $k \in[1, d-1]$, and $\sum_{i=1}^{d} x_{i}=\sum_{i=1}^{d} y_{i}$

- For a Hermitian matrix H let $\vec{\lambda}_{H}$ be the vector of eigenvalues of H in decreasing order
- For two Hermitian matrices H and K we write $H<K$ if $\vec{\lambda}_{H}<\vec{\lambda}_{K}$

Pure state conversion via LOCC

Proposition 2.2. Let H and K be Hermitian matrices. Then $H<$ K if and only if there is a probability distribution p_{j} and unitary matrices U_{j} such that

$$
H=\sum_{j} p_{j} U_{j} K U_{j}^{\dagger}
$$

Pure state conversion via LOCC

Proposition 2.2. Let H and K be Hermitian matrices. Then $H<$ K if and only if there is a probability distribution p_{j} and unitary matrices U_{j} such that

$$
H=\sum_{j} p_{j} U_{j} K U_{j}^{\dagger}
$$

Theorem 2.1. (Nielsen's Theorem) There exists an LOCC protocol transforming $|\psi\rangle^{A B}$ into $|\phi\rangle^{A B}$ if and only if $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$, where $\vec{\lambda}_{\psi}$ denotes the vector with eigenvalues of the reduced state $\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ in decreasing order.

Proof of Theorem 2.1

- Suppose $|\psi\rangle^{A B}$ can be transformed into $|\phi\rangle^{A B}$ via LOCC.

Proof of Theorem 2.1

- Suppose $|\psi\rangle^{A B}$ can be transformed into $|\phi\rangle^{A B}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators $\left\{K_{j}\right\}$ and Bob applies local unitaries $\left\{U_{j}\right\}$.

Proof of Theorem 2.1

- Suppose $|\psi\rangle^{A B}$ can be transformed into $|\phi\rangle^{A B}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators $\left\{K_{j}\right\}$ and Bob applies local unitaries $\left\{U_{j}\right\}$.
- After Alice's measurement, the total post-measurement state is equal to $|\phi\rangle^{A B}$ up to local unitaries on Bob's side:

$$
K_{j} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{p_{j}} \mathbb{1} \otimes U_{j}^{\dagger}|\phi\rangle^{A B} .
$$

Proof of Theorem 2.1

- Suppose $|\psi\rangle^{A B}$ can be transformed into $|\phi\rangle^{A B}$ via LOCC.
- By proposition 2.1, the transformation is achieved if Alice applies a measurement with local Kraus operators $\left\{K_{j}\right\}$ and Bob applies local unitaries $\left\{U_{j}\right\}$.
- After Alice's measurement, the total post-measurement state is equal to $|\phi\rangle^{A B}$ up to local unitaries on Bob's side:

$$
K_{j} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{p_{j}} \mathbb{1} \otimes U_{j}^{\dagger}|\phi\rangle^{A B} .
$$

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

Proof of Theorem 2.1

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

Proof of Theorem 2.1

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

- By polar decomposition there exists a unitary V_{j} such that

$$
K_{j} \sqrt{\rho_{\psi}}=\sqrt{K_{j} \rho_{\psi} K_{j}^{\dagger}} V_{j}=\sqrt{p_{j} \rho_{\phi}} V_{j}
$$

Proof of Theorem 2.1

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

- By polar decomposition there exists a unitary V_{j} such that

$$
K_{j} \sqrt{\rho_{\psi}}=\sqrt{K_{j} \rho_{\psi} K_{j}^{\dagger}} V_{j}=\sqrt{p_{j} \rho_{\phi}} V_{j}
$$

- Multiplying this equation with its adjoint from the left, we get

$$
\sqrt{\rho_{\psi}} K_{j}^{\dagger} K_{j} \sqrt{\rho_{\psi}}=p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}
$$

Proof of Theorem 2.1

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

- By polar decomposition there exists a unitary V_{j} such that

$$
K_{j} \sqrt{\rho_{\psi}}=\sqrt{K_{j} \rho_{\psi} K_{j}^{\dagger}} V_{j}=\sqrt{p_{j} \rho_{\phi}} V_{j}
$$

- Multiplying this equation with its adjoint from the left, we get

$$
\sqrt{\rho_{\psi}} K_{j}^{\dagger} K_{j} \sqrt{\rho_{\psi}}=p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}
$$

- Taking sum over j and using $\sum_{j} K_{j}^{\dagger} K_{j}=\mathbb{1}$ we obtain

$$
\rho_{\psi}=\sum_{j} p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}
$$

Proof of Theorem 2.1

- Defining $\rho_{\psi}=\operatorname{Tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|^{A B}\right]\right.$ and $\rho_{\phi}=\operatorname{Tr}_{B}\left[|\phi\rangle\left\langle\left.\phi\right|^{A B}\right]\right.$, we get

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

with $p_{j}=\operatorname{Tr}\left[K_{j} \rho_{\psi} K_{j}^{\dagger}\right]$.

- By polar decomposition there exists a unitary V_{j} such that

$$
K_{j} \sqrt{\rho_{\psi}}=\sqrt{K_{j} \rho_{\psi} K_{j}^{\dagger}} V_{j}=\sqrt{p_{j} \rho_{\phi}} V_{j}
$$

- Multiplying this equation with its adjoint from the left, we get

$$
\sqrt{\rho_{\psi}} K_{j}^{\dagger} K_{j} \sqrt{\rho_{\psi}}=p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}
$$

- Taking sum over j and using $\sum_{j} K_{j}^{\dagger} K_{j}=\mathbb{1}$ we obtain

$$
\rho_{\psi}=\sum_{j} p_{j} V_{j}^{\dagger} \rho_{\phi} V_{j}
$$

- By proposition 2.2 we have $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$.

Proof of Theorem 2.1

- Suppose that $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$, and thus $\rho_{\psi}<\rho_{\phi}$.

Proof of Theorem 2.1

- Suppose that $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$, and thus $\rho_{\psi}<\rho_{\phi}$.
- By proposition 2.2

$$
\rho_{\psi}=\sum_{j} p_{j} U_{j} \rho_{\phi} U_{j}^{\dagger}
$$

for some probabilities p_{j} and unitaries U_{j}.

Proof of Theorem 2.1

- Suppose that $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$, and thus $\rho_{\psi}<\rho_{\phi}$.
- By proposition 2.2

$$
\rho_{\psi}=\sum_{j} p_{j} U_{j} \rho_{\phi} U_{j}^{\dagger}
$$

for some probabilities p_{j} and unitaries U_{j}.

- If ρ_{ψ} is invertible, we define

$$
K_{j}:=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}
$$

Proof of Theorem 2.1

- Suppose that $\vec{\lambda}_{\psi}<\vec{\lambda}_{\phi}$, and thus $\rho_{\psi}<\rho_{\phi}$.
- By proposition 2.2

$$
\rho_{\psi}=\sum_{j} p_{j} U_{j} \rho_{\phi} U_{j}^{\dagger}
$$

for some probabilities p_{j} and unitaries U_{j}.

- If ρ_{ψ} is invertible, we define

$$
K_{j}:=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}
$$

- It holds that

$$
\sum_{j} K_{j}^{\dagger} K_{j}=\rho_{\psi}^{-1 / 2}\left(\sum_{j} p_{j} U_{j} \rho_{\phi} U_{j}^{\dagger}\right) \rho_{\psi}^{-1 / 2}=\rho_{\psi}^{-1 / 2} \rho_{\psi} \rho_{\psi}^{-1 / 2}=\mathbb{1}
$$

thus K_{j} are valid Kraus operators.

Proof of Theorem 2.1

- Suppose Alice performs the measurement $\left\{K_{j}\right\}$.

Proof of Theorem 2.1

- Suppose Alice performs the measurement $\left\{K_{j}\right\}$.
- Recalling that $K_{j}=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}$ it follows

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

Proof of Theorem 2.1

- Suppose Alice performs the measurement $\left\{K_{j}\right\}$.
- Recalling that $K_{j}=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}$ it follows

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

- When Alice applies the measurement $\left\{K_{j}\right\}$ to the total state $|\psi\rangle^{A B}$, she obtains the reduced state ρ_{ϕ} with probability p_{j}.

Proof of Theorem 2.1

- Suppose Alice performs the measurement $\left\{K_{j}\right\}$.
- Recalling that $K_{j}=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}$ it follows

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

- When Alice applies the measurement $\left\{K_{j}\right\}$ to the total state $|\psi\rangle^{A B}$, she obtains the reduced state ρ_{ϕ} with probability p_{j}.
- Since all purifications of ρ_{ϕ} are equivalent up to unitary on Bob's side, it follows that there exist unitaries U_{j} on Bob's side such that

$$
K_{j} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{p_{j}} \mathbb{1} \otimes U_{j}|\phi\rangle^{A B}
$$

Proof of Theorem 2.1

- Suppose Alice performs the measurement $\left\{K_{j}\right\}$.
- Recalling that $K_{j}=\sqrt{p_{j} \rho_{\phi}} U_{j}^{\dagger} \rho_{\psi}^{-1 / 2}$ it follows

$$
K_{j} \rho_{\psi} K_{j}^{\dagger}=p_{j} \rho_{\phi}
$$

- When Alice applies the measurement $\left\{K_{j}\right\}$ to the total state $|\psi\rangle^{A B}$, she obtains the reduced state ρ_{ϕ} with probability p_{j}.
- Since all purifications of ρ_{ϕ} are equivalent up to unitary on Bob's side, it follows that there exist unitaries U_{j} on Bob's side such that

$$
K_{j} \otimes \mathbb{1}|\psi\rangle^{A B}=\sqrt{p_{j}} \mathbb{1} \otimes U_{j}|\phi\rangle^{A B}
$$

- Thus, if Alice applies measurement $\left\{K_{j}\right\}$ to the state $|\psi\rangle^{A B}$, communicates the measurement outcome j to Bob, and he performs U_{j}^{\dagger}, they achieve the conversion $|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}$.

Pure state conversion

Exercise: Consider the states

$$
\begin{aligned}
|\psi\rangle^{A B} & =\sqrt{0.4}|00\rangle+\sqrt{0.4}|11\rangle+\sqrt{0.1}|22\rangle+\sqrt{0.1}|33\rangle \\
|\phi\rangle^{A B} & =\sqrt{0.5}|00\rangle+\sqrt{0.25}|11\rangle+\sqrt{0.25}|22\rangle
\end{aligned}
$$

Is the conversion $|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}$ or $|\phi\rangle^{A B} \rightarrow|\psi\rangle^{A B}$ possible via LOCC?

Hint: Check if $\vec{\lambda}_{\psi} \prec \vec{\lambda}_{\phi}$, recalling that $\vec{x} \prec \vec{y}$ if

$$
\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}
$$

for all $k \in[1, d-1]$, and $\sum_{i=1}^{d} x_{i}=\sum_{i=1}^{d} y_{i}$

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Probabilistic conversion

- Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}$ with probability p

Probabilistic conversion

- Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}$ with probability p
- Definition for general $\rho^{A B}$ and $\sigma^{A B}$

$$
P\left(\rho^{A B} \rightarrow \sigma^{A B}\right)=\max _{\left\{K_{i}\right\}}\left\{\operatorname{Tr}\left[\sum_{i} K_{i} \rho^{A B} K_{i}^{\dagger}\right]: \sigma^{A B}=\frac{\sum_{i} K_{i} \rho^{A B} K_{i}^{\dagger}}{\operatorname{Tr}\left[\sum_{i} K_{i} \rho^{A B} K_{i}^{\dagger}\right]}\right\}
$$

- Maximum is taken over all (incomplete) sets of Kraus operators $\left\{K_{i}\right\}$ which are implementable via LOCC

Probabilistic conversion

- Probabilistic conversion: Alice and Bob are allowed to post-select the outcomes of their local measurements, leading to a conversion $|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}$ with probability p
- Pure states $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$:

$$
P\left(|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}\right)=\min _{l \in[1, n]} \frac{\sum_{i=1}^{n} \alpha_{i}}{\sum_{j=1}^{n} \beta_{j}}
$$

- α_{i} and β_{j} are the Schmidt coefficients of $|\psi\rangle^{A B}$ and $|\phi\rangle^{A B}$ sorted in decreasing order

Catalytic conversion

If there is no LOCC protocol such that

$$
|\psi\rangle^{A B} \rightarrow|\phi\rangle^{A B}
$$

there might be a catalyst state $|c\rangle^{A^{\prime} B^{\prime}}$ such that

$$
|\psi\rangle^{A B} \otimes|c\rangle^{A^{\prime} B^{\prime}} \rightarrow|\phi\rangle^{A B} \otimes|c\rangle^{A^{\prime} B^{\prime}}
$$

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis

Bell states

Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Bell states

Bell states (or EPR states):

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Bell states

Bell states (or EPR states):

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

- Reduced state of any Bell state: $\frac{1}{2} \mathbb{1}_{2}$

Bell states

Bell states (or EPR states):

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

- Reduced state of any Bell state: $\frac{1}{2} \mathbb{1}_{2}$
- For any single-qubit state ρ it holds $\frac{1}{2} \mathbb{1}_{2}<\rho$

Bell states

Bell states (or EPR states):

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

- Reduced state of any Bell state: $\frac{1}{2} \mathbb{1}_{2}$
- For any single-qubit state ρ it holds $\frac{1}{2} \mathbb{1}_{2}<\rho$
- Theorem 2.1. \Rightarrow any Bell state can be converted into any two-qubit pure state via LOCC

Maximally entangled states

Bell states are also called maximally entangled states

Maximally entangled states

Bell states are also called maximally entangled states

- For $d_{A}=d_{B}=d$ a state $\left|\Psi_{d}\right\rangle$ is maximally entangled if and only if

$$
\operatorname{Tr}_{A}\left[\left|\Psi_{d}\right\rangle\left\langle\Psi_{d}\right|\right]=\mathbb{1}_{d} .
$$

Maximally entangled states

Bell states are also called maximally entangled states

- For $d_{A}=d_{B}=d$ a state $\left|\Psi_{d}\right\rangle$ is maximally entangled if and only if

$$
\operatorname{Tr}_{A}\left[\left|\Psi_{d}\right\rangle\left\langle\Psi_{d}\right|\right]=\mathbb{1}_{d} .
$$

- All maximally entangled states are equivalent to

$$
\left|\Phi_{d}^{+}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}|i i\rangle
$$

up to local unitary on one side:

$$
\left|\Psi_{d}\right\rangle=(U \otimes \mathbb{1})\left|\Phi_{d}^{+}\right\rangle=(\mathbb{1} \otimes V)\left|\Phi_{d}^{+}\right\rangle
$$

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Entanglement for mixed states

Separable mixed states:

$$
\rho_{\mathrm{sep}}^{A B}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

with $p_{i} \geq 0, \sum_{i} p_{i}=1,\left|\psi_{i}\right\rangle \in \mathcal{H}_{A}$ and $\left|\phi_{i}\right\rangle \in \mathcal{H}_{B}$.

Entanglement for mixed states

Separable mixed states:

$$
\rho_{\mathrm{sep}}^{A B}=\sum_{i} \mathrm{p}_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

with $p_{i} \geq 0, \sum_{i} p_{i}=1,\left|\psi_{i}\right\rangle \in \mathcal{H}_{A}$ and $\left|\phi_{i}\right\rangle \in \mathcal{H}_{B}$.
States which are not separable are called entangled

Outline

(1) Theory of quantum entanglement Local operations and classical communication Pure state conversion via LOCC Probabilistic conversion and catalysis Bell states Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Outline

(1) Theory of quantum entanglement

Local operations and classical communication
Pure state conversion via LOCC
Probabilistic conversion and catalysis
Bell states
Entanglement for mixed states
(2) Entanglement detection

Entanglement witnesses

Entanglement witnesses

Entanglement witness: Hermitian matrix $W^{A B}$ such that

$$
\operatorname{Tr}\left[W^{A B}(|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|)\right]=(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle) \geq 0
$$

for any $|\psi\rangle \in \mathcal{H}_{A}$ and $|\phi\rangle \in \mathcal{H}_{B}$

Entanglement witnesses

Entanglement witness: Hermitian matrix $W^{A B}$ such that

$$
\operatorname{Tr}\left[W^{A B}(|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|)\right]=(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle) \geq 0
$$

for any $|\psi\rangle \in \mathcal{H}_{A}$ and $|\phi\rangle \in \mathcal{H}_{B}$

- For any separable state $\rho_{\text {sep }}^{A B}$ we have

$$
\begin{aligned}
\operatorname{Tr}\left[W^{A B} \rho_{\mathrm{sep}}^{A B}\right] & =\operatorname{Tr}\left[W^{A B}\left(\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)\right] \\
& =\sum_{i} p_{i} \operatorname{Tr}\left[W^{A B}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)\right] \geq 0
\end{aligned}
$$

Entanglement witnesses

Entanglement witness: Hermitian matrix $W^{A B}$ such that

$$
\operatorname{Tr}\left[W^{A B}(|\psi\rangle\langle\psi| \otimes|\phi\rangle\langle\phi|)\right]=(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle) \geq 0
$$

for any $|\psi\rangle \in \mathcal{H}_{A}$ and $|\phi\rangle \in \mathcal{H}_{B}$

- For any separable state $\rho_{\text {sep }}^{A B}$ we have

$$
\begin{aligned}
\operatorname{Tr}\left[W^{A B} \rho_{\mathrm{sep}}^{A B}\right] & =\operatorname{Tr}\left[W^{A B}\left(\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)\right] \\
& =\sum_{i} p_{i} \operatorname{Tr}\left[W^{A B}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \otimes\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)\right] \geq 0
\end{aligned}
$$

- If $\operatorname{Tr}\left[W^{A B} \rho^{A B}\right]<0$, the state $\rho^{A B}$ must be entangled

Entanglement witnesses

Theorem 3.1. For any entangled state $\rho^{A B}$ there exists an entanglement witness such that $\operatorname{Tr}\left[W^{A B} \rho^{A B}\right]<0$.

Entanglement witnesses

Theorem 3.1. For any entangled state $\rho^{A B}$ there exists an entanglement witness such that $\operatorname{Tr}\left[W^{A B} \rho^{A B}\right]<0$.

Entanglement witnesses

Theorem 3.1. For any entangled state $\rho^{A B}$ there exists an entanglement witness such that $\operatorname{Tr}\left[W^{A B} \rho^{A B}\right]<0$.

Interpretation of $W^{A B}$: observable with expectation value $\operatorname{Tr}\left[W^{A B} \rho^{A B}\right]$

Entanglement witnesses

Example. Swap operation for $d_{A}=d_{B}$:

$$
W^{A B}=\sum_{i, j=0}^{d-1}|i\rangle\langle j| \otimes|j\rangle\langle i|
$$

Entanglement witnesses

Example. Swap operation for $d_{A}=d_{B}$:

$$
W^{A B}=\sum_{i, j=0}^{d-1}|i\rangle\langle j| \otimes|j\rangle\langle i|
$$

- $W^{A B}|\psi\rangle \otimes|\phi\rangle=|\phi\rangle \otimes|\psi\rangle$, and thus
$(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle)=(\langle\psi| \otimes\langle\phi|)(|\phi\rangle \otimes|\psi\rangle)=|\langle\psi \mid \phi\rangle|^{2} \geq 0$

Entanglement witnesses

Example. Swap operation for $d_{A}=d_{B}$:

$$
W^{A B}=\sum_{i, j=0}^{d-1}|i\rangle\langle j| \otimes|j\rangle\langle i|
$$

- $W^{A B}|\psi\rangle \otimes|\phi\rangle=|\phi\rangle \otimes|\psi\rangle$, and thus

$$
(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle)=(\langle\psi| \otimes\langle\phi|)(|\phi\rangle \otimes|\psi\rangle)=|\langle\psi \mid \phi\rangle|^{2} \geq 0
$$

- $W^{A B}$ has negative eigenvalues:

$$
W^{A B}\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(W^{A B}|01\rangle-W^{A B}|10\rangle\right)=-\left|\Psi^{-}\right\rangle
$$

Entanglement witnesses

Example. Swap operation for $d_{A}=d_{B}$:

$$
W^{A B}=\sum_{i, j=0}^{d-1}|i\rangle\langle j| \otimes|j\rangle\langle i|
$$

- $W^{A B}|\psi\rangle \otimes|\phi\rangle=|\phi\rangle \otimes|\psi\rangle$, and thus

$$
(\langle\psi| \otimes\langle\phi|) W^{A B}(|\psi\rangle \otimes|\phi\rangle)=(\langle\psi| \otimes\langle\phi|)(|\phi\rangle \otimes|\psi\rangle)=|\langle\psi \mid \phi\rangle|^{2} \geq 0
$$

- $W^{A B}$ has negative eigenvalues:

$$
W^{A B}\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(W^{A B}|01\rangle-W^{A B}|10\rangle\right)=-\left|\Psi^{-}\right\rangle
$$

- $\Rightarrow W^{A B}$ detects entanglement in $\left|\Psi^{-}\right\rangle$

